Area under a curve

Objective:

To estimate the approximate area under the graph of a continuous function f(x)
on the interval [a,b].

Basic approach:

Cover, or tessellate, the region with "tiles" of known area. Total area of
tiles gives the required approximation.

To find area under curves, we use rectangular tiles.

Strategy:

[1] Divide the given interval [a,b] into smaller pieces (sub-intervals).
[2] Construct a rectangle on each sub-interval & "tile" the whole area.

[3] Calculate total area of all the rectangles to get approximate area under f(x).



Example

Approximate the area under y= f(X)=X2+1, from X=0 to 4, using 4 rectangles.
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Solution:

0.0

Four intervals of equal width = Ax=(4.0-0)/4=1.0
Find X-values at interval boundaries: Xp=0, X1=1.0, x2=2.0, x3=3.0, x4=4.0.

To get rectangle heights, find f(x) values at interval boundaries: f(x,)= X/3+l.

f(x0)=1.0, f(x1)=2.0, f(x2)=5.0, f(x3)=10.0, f(x4)=17.0.

If we use the left end-points: Area = [

If we use right end-points: Area = l

4
Y f(xy)
k=1

k=0

These are called Riemann sums --
Denoted L4 for left end-points with 4 intervals

and R4 for right end-points with 4 intervals

]Ax = (2+5+10+17)*1.0 =34.0

3
Y f(xg) ]Ax = (1+2+5+10)*1.0 =18.0




Question: Suppose you're given a specific problem and you are required to use
exactly 10 rectangles. Are there good & bad choices for how exactly to pick the
rectangles?

Example 1. y= f(x)= x2+1, from x=0 to x=4, with 10 equal intervals.
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Example 2: y=f(x)=¢€" XI2 from x=0 to x=4, with 10 equal intervals.
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Example 1 with mid-points
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Example 2 with mid-points
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Right end points:
R10=16.53




Conclusions

(D) If f(x) is monotonically increasing from a to b then:
The left end-points underestimate the true area.

The right end-points overestimate the true area.

(1) If f(x) is monotonically decreasing from a to b then:
The left end-points overestimate the true area.

The right end-points underestimate the true area.

(111 If f(x) is not monotonic on a to b then each type of Riemann sum (left &
right) may underestimate or overestimate the true area -- we cannot predict
without knowing the exact form of f(x).



The exact area under a curve

Key points:

* The approximate area, clearly, gets more & more accurate as the number of
rectangles (say, n) increases.

* |t follows that the exact area is obtained when n goes to <

* In general, the approximate area with n rectangles (of equal width) has the form

n-1 — n
A=| ¢ f(x )]Ax OR A=| Y f(x )]Ax
n k=0 k n =1 k
* Thus, the exact area is:
. n-1 _ n
A = lim [z f(xk)]Ax = lim lg f(xk)]Ax
N—ee| k=0 NnN—oolk=1

* This comprises the fundamental definition of the definite integral:

Definite integral = Limit of a Riemann sum as the summation goes to <o

b
a N—oe| k=1 n

Here X, denotes any point between X, _, and Xx,.

Key point to note: The definite integral of a function is a number, NOT a function.

Recall, the indefinite integral of a function is a function.



Definite integral

Geometric Interpretation:

For any f (X) continuous (and positive) on the interval [a,b], the definite integral
b

j f(x) dx is the (exact) area under the graph of f (x) from a to b.
a

Question: What if f (X) is not positive?

A: Easy to figure out using the Riemann sum interpretation.

It A =

n * *\ . .
Y f(xk)] Ax, what happens when f(x ) is negative?
k=1

f(x)

Regions where f is positive contribute positive values to the definite integral.
Regions where f is negaitive contribute negaitive values.

b
The net value of j f(x) dx is obtained by adding the positive regions and

a
subtracting the negaitive regions.



Proof strategy for evaluation theorem
Prelude: How can one prove equality between any two entities, i.e., LHS=RHS?

One way: Start with LHS (or RHS) -- then manipulate it and transform it into the other.
E.g., Prove that (x+1)2 =x242x+1

b
For the evaluation theorem, we must prove: I f(x) dx=F(b)-F(a)

a
where F(x) is a function that satisfies ar =f.

ax
Proof strategy:

(1) Start with RHS, which is F (b) - F (a).
(2) Transform this into a summation involving n terms over the interval [a, b].

Eg. F(b-F(a=F(b)+[(p-p)+(g-q)+(r—r)+...]- F(a)
Select p= F(x,_1), q=F(x,_5), r=F(X,_3), ... ; withb=Xx,a=Xx,
Thisgives: F(b)- F(a)= F(x,)— F(x,_1)+ F(X,_1)— F(X,_5)+ ...+ F(x) - F(X)

FB-F@= £ [F(x)-FOg_q)]
k=1

(Now we need to figure out a way to bring f into the above summation.)

(3) Use mean value theorem to relate differences in F to its derivative %
X

(4) Use the condition that F is required to satisfy: % = f, to bring f into the
X

picture. Take limits as n— <=, and we obtain the required LHS. Hence we have
shown that LHS=RHS.

[ Aside: What does the mean value theorem really say? |



