
The Chain Rule

Objective: To differentiate more general, complicated functions.

Key idea 

* Treat complicated functions as composites assembled from simpler functions.

* Examples:
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r (t) = ln t
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g(t) = ln 1-  t 55 g(u) = u
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* It is now important to distinguish between differentiation variables.

In example (1): 
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* Thus, the prime notation can become very misleading or confusing here.



Recall the general power rule ("baby" chain rule):  

If your function has the form f(x)=un then its derivative is
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The full chain rule says:  

If you write (or imagine) the function f(x) as a composite of the form f(u)•u(x), 

then its derivative with respect to x is 
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Recipe for applying the full chain rule to find df/dx:  

  

 e.g.,  let f(x) = e
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Step 1: Simplify the function by writing it as composite of u(x).  

  
 e.g.,  let f(u) = eu,     u(x) =  x
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Step 2: Differentiate f(u) with respect to u, and u(x) with respect to x, to get 

  

df
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.  

  

 e.g.,  
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Step 3: Get df/dx from chain rule: 
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 e.g.,  
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Step 4: Replace "u" by original stuff.   

  

 e.g.,  
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Implicit Differentiation Preliminaries

What are implicit functions?

* Examples:

(A)   y2 - x = 0;           (B)     x e
y - y = x

2 - 2;          (C)   2y + xy - 1 = 0

* Key feature:

- y is not defined solely in terms of x.

- Function definition consists of mixture of x, y terms.

- Sometimes it is possible to solve for "y" and rewrite as y=f(x), but 

often it is not.

* Some questions to think about:

(1) How do you tell which variable is dependent and which independent?

      E.g., think about the above 3 examples.

(2) Is it still a function?  How can we tell?

(3) How can we graph such equations, even with a calculator?



Watch out for the variable of differentiation

* Suppose y is an implicit function of x: y = y(x).

* Any function created from y(x), can be differentiated with respect to x.

* Differentiate the following terms (or, function) as instructed:

(A)  x2 with respect to x.

(B)  y2 with respect to y.

(C)  y2 with respect to x.

(D)    y  with respect to y.

(E)    y  with respect to x.

(F)  x y2 with respect to x.

* Answers: 
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