The Chain Rule

Objective: To differentiate more general, complicated functions.

Key idea
* Treat complicated functions as composites assembled from simpler functions.
* Examples:
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* It is now important to distinguish between differentiation variables.

In example (1): ar is not the same as ar or du
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* Thus, the prime notation can become very misleading or confusing here.



Recall the general power rule ("baby" chain rule):

If your function has the form f(x)=uM then its derivative is
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The full chain rule says:

If you write (or imagine) the function f(x) as a composite of the form f(u)-u(x),

then its derivative with respect to x is
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Recipe for applying the full chain rule to find df/dx:
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Step 1: Simplify the function by writing it as composite of u(x).
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Step 2: Differentiate f(u) with respect to u, and u(x) with respect to x, to get
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Implicit Differentiation Preliminaries

What are implicit functions?

* Examples:
(A) y2-x=0; (B) xe¥-y=x?-2; (C) 2y +xy-1=0

* Key feature:
- y is not defined solely in terms of x.
- Function definition consists of mixture of x, y terms.

- Sometimes it is possible to solve for "y" and rewrite as y=f(x), but
often it is not.
* Some questions to think about:
(1) How do you tell which variable is dependent and which independent?
E.g., think about the above 3 examples.
(2) Is it still a function? How can we tell?

(3) How can we graph such equations, even with a calculator?



Watch out for the variable of differentiation
* Suppose y is an implicit function of x: y = y(x).
* Any function created from y(x), can be differentiated with respect to x.

* Differentiate the following terms (or, function) as instructed:
(A) x2 with respect to x.
(B) y2 with respect to y.
(C) y2 with respect to x.
(D) \Fy with respect to y.
(E) \7 with respect to x.

(F) x y2 with respect to x.

* Answers:

(A) 2x (B) 2y
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