Quiz 6 - 10/18/2019

- (a) Find dy/dx and simplify: $\sin x + \cos y = \sin x \cos y$.
- (b) Find an equation of the tangent line to the graph of the above curve at $(\pi, \pi/2)$.

Solution

(a) Differentiate each term with respect to x.

Term 1:
$$\frac{d}{dx}(\sin x) = \cos x$$

Term 2:
$$\frac{d}{dx}(\cos y) = -\sin y \frac{dy}{dx}$$

Term 3:
$$\frac{d}{dx}(\sin x \cos y) = (\sin x)\frac{d}{dx}(\cos y) + (\cos y)\frac{d}{dx}(\sin x)$$

$$= (\sin x)(-\sin y)\frac{dy}{dx} + (\cos y)(\cos x)$$

Put everything together and solve for dy/dx:

$$\cos x - \sin y \frac{dy}{dx} = -\sin x \sin y \frac{dy}{dx} + \cos x \cos y$$

$$\Rightarrow \sin y \frac{dy}{dx} (\sin x - 1) = \cos x (\cos y - 1)$$

$$\therefore \frac{dy}{dx} = \frac{\cos x (\cos y - 1)}{\sin y (\sin x - 1)}$$

(b) Equation of tangent line at
$$(\pi, \pi/2)$$
:
We want $y = mx + b$, where $m = \frac{dy}{dx}$ at $(\pi, \pi/2)$

Thus,
$$m = \frac{\cos(\pi)(\cos(\pi/2) - 1)}{\sin(\pi/2)(\sin(\pi) - 1)} = \frac{-1(0 - 1)}{1(0 - 1)} = -1$$

Equation of tangent: y = -x + b.

Plugin
$$(\pi, \pi/2)$$
 to solve for b : $\pi/2 = -\pi + b \implies b = 3\pi/2$.

Answer:
$$y = -x + 3\pi/2$$

Grading: Total points possible = 6.

1 pt = correctly differentiate Term
$$2$$
.

$$1.5 \text{ pt} = \text{correctly differentiate Term } 3.$$

1 pt = correctly solve for
$$dy/dx$$
.