Quiz 5 - 10/11/2019

(I) Let $f(x) = \sin(x) - \cos(x)$. Find all the x values where the graph of f has horizontal tangents.

(II) If f is a differentiable function, find an expression for the derivative of $y = \frac{f(x)}{\sqrt{x}}$.

As always, show steps and reasoning for all solutions.

Solution

(I) The graph of f has horizontal tangents when f'(x) = 0. Here we have: $f'(x) = \cos(x) + \sin(x)$.

$$f'(x) = 0$$
 implies $\cos(x) + \sin(x) = 0$

Thus, we want: $\sin(x) = -\cos(x)$.

From the unit circle we see $\sin \theta = -\cos \theta$ at 2 places: $\theta = 180^{\circ} - 45^{\circ} = 135^{\circ}$, and $\theta = 360^{\circ} - 45^{\circ} = 315^{\circ}$.

f has horizontal tangents at: $x = 3\pi/4 + n\pi$ where $n = 0, \pm 1, \pm 2, \dots$

Using quotient rule: $y' = \frac{\sqrt{x} \cdot f'(x) - f(x)(\sqrt{x})'}{(\sqrt{x})^2}$

$$= \frac{\sqrt{x} \cdot f'(x) - f(x) \cdot \frac{1}{2\sqrt{x}}}{x}$$

Multiply numerator & denom by $2\sqrt{x}$ to simplify and get:

$$=\frac{2x \cdot f'(x) - f(x)}{2x\sqrt{x}}$$

Answer: $y' = \frac{2xf'(x) - f(x)}{2x\sqrt{x}}$ OR $\frac{f'(x)}{\sqrt{x}} - \frac{f(x)}{2x\sqrt{x}}$

Grading: Total points possible = 6.

3 pt for (I): 0.5 pt = know/show we want f' = 0.

1.5 pt = find f' and show we want sin(x) = -cos(x) or tan(x) = -1.

1 pt = solve correctly for x-values (including $n\pi$).

3 pt for (II): 0.5 pt = correctly set up QR formula.

1.5 pt = correctly differentiate numerator terms.

1 pt = simplify.

