Cohomology of Topological Groups and Grothendieck Topologies

Igor Minevich

April 23, 2014

Outline

- **3** Cochain Theories and Grothendieck Topologies
- Comparison of Cohomology Theories

5 Yoneda Ext's

Cohomology of Topological Groups

- There is a good theory of group cohomology for a group *G* and a *G*-module *A*.
- What if G is a topological group and A is a topological G-module (an abelian topological group with a continuous G-action $G \times A \rightarrow A$)?
- We want a different theory that gives more, or better, information.

Lichtenbaum's Topology

Definition (Lichtenbaum)

The Grothendieck topology T_G^L :

- Category = C_G : G-spaces and continuous G-maps
- Coverings: {f_i : X_i → X} such that for every x ∈ X there is a neighborhood U of x, an index i, and a continuous section s : U → X_i with f_i ∘ s = id_U.

Theorem (Lichtenbaum)

Let A be a topological G-module and $\tilde{A} = \text{Hom}_{C_G}(-, A)$. Then $H^n(T_G^L, pt, \tilde{A}) = H_{ss}^n(G, A)$, Wigner's semisimplicial cohomology.

Application: Weil-étale Cohomology

- Let K be a number field.
- Lichtenbaum "combined" many T^L_G's, where the G's are local Weil groups of K and the global Weil group of K, and constructed the Grothendieck topology T_K.
- Euler characteristics of T_K should be related to special values of ζ_K .

The Cochain Theories

The definitions will be given as the cohomologies of complexes of inhomogeneous cochains:

$$H^n_*(G,A) = H^n(C^n_*(G,A),\delta_n)_{n=0}^{\infty}$$
$$\delta_n : C^n_*(G,A) \to C^{n+1}_*(G,A)$$

$$egin{aligned} &\delta_n(f)(g_0,\ldots,g_n) = g_0 \cdot f(g_1,\ldots,g_n) \ &+ \sum_{k=1}^n (-1)^k f(g_0,\ldots,g_{k-1}g_k,\ldots,g_n) \ &+ (-1)^{n+1} f(g_0,\ldots,g_{n-1}) \end{aligned}$$

Continuous and Measurable Cochain Theories

Continuous Cochain Theory

$$C_c^n(G, A) = \{ \text{continuous maps } G^n \to A \}$$

Measurable Cochain Theory

$$C^n_m(G,A) = \{$$
measurable maps $G^n \to A\}$

Locally Continuous Theories

Locally Continuous Cochain Theory

$$\mathcal{C}_{lc}^n(G,A) = \left\{egin{array}{c} \mathsf{maps}\ G^n o A\ \mathsf{continuous}\ \mathsf{on}\ \mathsf{a}\ \mathsf{neighborhood}\ \mathsf{of}\ (e,\ldots,e) \end{array}
ight.$$

Locally Continuous Measurable Cochain Theory

$$C_{lcm}^{n}(G,A) = \left\{ \begin{array}{c} \text{measurable maps } G^{n} \to A \text{ continuous on a} \\ \text{neighborhood of } (e,\ldots,e) \end{array} \right\}$$

Reinterpretation as Cohomologies of Grothendieck Topologies

Theorem (Minevich)

There exist Grothendieck topologies T_G^c , T_G^m , T_G^{lc} , T_G^{lcm} and sheaves F_A for a topological G-module A on these topologies, such that $H_*^n(G, A) \cong H^n(T_G^*, pt, F_A)$.

Description of the Grothendieck Topologies

Underlying Categories

- T_G^c : G-spaces and continuous G-maps
- T_G^m : G-spaces and measurable G-maps
- T_G^{lc} : pointed G-spaces (X, x) and G-maps $f : (X, x) \to (Y, y)$ with f(x) = y that are continuous on a neighborhood of x
- *T_G^{lcm}*: pointed *G*-spaces (*X*, *x*) and measurable *G*-maps
 f: (*X*, *x*) → (*Y*, *y*) with *f*(*x*) = *y* that are continuous on a neighborhood of *x*

Coverings

Single morphisms $\{f : X \to Y\}$ such that there is a section $s : Y \to X$ that is almost a morphism in the respective category: s must satisfy all properties except it need not be a *G*-map.

The Sheaves F_A

- For T_G^c and T_G^m , $F_A = \text{Hom}(-, A)$.
- For T^{lc}_G, F_A(X, x) is the set of G-maps f : X → A continuous on a neighborhood of x (f(x) need not be 0).
- For T_G^{lcm} , $F_A(X, x)$ is the set of measurable *G*-maps $f: X \to A$ continuous on a neighborhood of *x*.

Morphisms of Grothendieck Topologies

Definition

A morphism of Grothendieck topologies $g : T_1 \rightarrow T_2$ is a functor $Cat(T_1) \rightarrow Cat(T_2)$ which preserves fibered products and coverings.

- Let $\mathcal{S}(\mathcal{T})$ be the category of sheaves of abelian groups on \mathcal{T} .
- A morphism $g: T_1 \to T_2$ induces a functor $g_*: S(T_2) \to S(T_1)$ given by $g_*F(X) = F(gX)$.

Lemma

If for every $X \in Cat(T_1)$ and every covering $\{Y_i \rightarrow gX\}$ in T_2 there is a covering $\{X_j \rightarrow X\}$ in T_1 such that $\{gX_j \rightarrow gX\}$ refines $\{Y_i \rightarrow gX\}$, then g_* is exact.

The Use of Single Morphisms

Lemma

If g_* is exact, then for every $X \in Cat(T_1)$, every sheaf F on T_2 , and all n > 0 we have $H^n(T_1, X, g_*F) = H^n(T_2, gX, F)$.

Lemma (Minevich)

Suppose that in a Grothendieck topology T, $\{f_i : X_i \to X\}$ is a covering if and only if $\{\coprod f_i : \coprod X_i \to X\}$ is a covering. Let T^1 be the topology on Cat(T) whose coverings are single-morphism coverings in T. Then for the morphism $g : T^1 \to T$ which is the identity on Cat(T), g_* is exact.

- Applies to T_G^L
- Possible application to Weil-étale cohomology

Map from $H_{ss}^n(G, A)$ to $H_m^n(G, A)$

Theorem (Minevich)

If G is second countable, there are natural maps $H^n_{ss}(G, A) \to H^n_m(G, A).$

Proof

- Grothendieck topology $T_{G,sc}^{L,1}$
- Category: second countable G-spaces and continuous G-maps
- Coverings: single-morphism coverings in T_G^L
- Natural morphisms $T_G^L \xleftarrow{\alpha} T_{G,sc}^{L,1} \xrightarrow{\beta} T_G^m$
- α_* and β_* are exact.
- Inclusion $\alpha_* \tilde{A} \hookrightarrow \beta_* F_A$

Maps from $H_{ss}^n(G,A)$ to $H_{lc}^n(G,A)$ and $H_{lcm}^n(G,A)$

Theorem (Minevich)

There are natural maps $H^n_{ss}(G, A) \to H^n_{lc}(G, A)$. If G is second countable, there are natural maps $H^n_{ss}(G, A) \to H^n_{lcm}(G, A)$.

Proof

- Grothendieck topology $T^{L,1}_{G,sc,*}$
- Category: second countable pointed G-spaces and continuous G-maps $f: (X, x) \rightarrow (Y, y)$ with f(x) = y
- Coverings: single-morphism coverings in T_G^L
- Natural morphisms $T_G^L \xleftarrow{\alpha} T_{G,sc,*}^{L,1} \xrightarrow{\beta} T_G^{lcm}$
- α_* and β_* are exact.
- Inclusion $\alpha_* \tilde{A} \hookrightarrow \beta_* F_A$

Statement of the Theorem

- \mathcal{M}_G is the category of topological *G*-modules
- *M*^{pm}_G is the category of pseudometrizable topological G-modules
- \mathcal{M}_{G}^{cm} is the category of completely metrizable topological *G*-modules

Theorem (L. Brown - Minevich)

If G is "weakly separable" and $A, B \in \mathcal{M}_G^{cm}$ then for all n

$$\operatorname{Ext}^n_{\mathcal{M}_G}(A,B) \cong \operatorname{Ext}^n_{\mathcal{M}_G^{pm}}(A,B) \cong \operatorname{Ext}^n_{\mathcal{M}_G^{cm}}(A,B)$$

- We can define $H^n(G, A) = \operatorname{Ext}^n_{\mathcal{M}_G}(\mathbb{Z}, A)$.
- For completely metrizable A, we can work in \mathcal{M}_G^{cm} instead.

Definitions for Topological Spaces

Definition

A topological space X is pseudometrizable if its topology is induced by a pseudometric, i.e. a "metric" d for which we could have d(x, y) = 0 without x = y. X is completely metrizable if its topology is induced by a metric d

under which X is complete.

Definition

A topological group G is weakly separable if for every open set U in G, the covering $\{xU\}_{x\in G}$ has a countable subcovering.

Proper Morphisms and Exact Sequences

Definition

A morphism $f : A \to B$ in an additive category is proper if its image is well-defined, i.e. $Coker(ker f) \xrightarrow{\sim} ker(Coker f)$.

- In the categories $\mathcal{M}_G, \mathcal{M}_G^{pm}$, and \mathcal{M}_G^{cm} , $f : A \to B$ is proper iff it is open as a map onto its image.
- An injection A → B is proper iff it is a homeomorphism onto its image.

Definition

A sequence $A \xrightarrow{f} B \xrightarrow{g} C$ is exact if f and g are proper, $g \circ f = 0$, and $\operatorname{Im}(f) \xrightarrow{\sim} \ker g$.

Definition of Yoneda Ext

$$\operatorname{Ext}^n(A,B) = \{ \operatorname{exact sequences} 0 \to B \to E_n \to \dots \to E_1 \to A \to 0 \} / \sim$$

where \sim is the equivalence relation generated by commutative diagrams

The Proof

- The hard part is showing Extⁿ_{M_G}(A, B) = Extⁿ_{M^{pm}_C}(A, B).
- The key is in showing that, if we have a proper injection
 i : B → E where B is a pseudometrizable G-module and E is
 any topological G-module, then there is a coarser topology on
 E with which *i* is still a proper injection and E is a
 pseudometrizable topological G-module.
- This uses the fact that a topological group is pseudometrizable iff it is first countable
- We construct a good basis for E at 0 using the balls of radius 1/n in B