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Cohomology of Topological Groups

There is a good theory of group cohomology for a group G
and a G -module A.

What if G is a topological group and A is a topological
G -module (an abelian topological group with a continuous
G -action G × A→ A)?

We want a different theory that gives more, or better,
information.
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Lichtenbaum’s Topology

Definition (Lichtenbaum)

The Grothendieck topology T L
G :

Category = CG : G-spaces and continuous G-maps

Coverings: {fi : Xi → X} such that for every x ∈ X there is a
neighborhood U of x, an index i , and a continuous section
s : U → Xi with fi ◦ s = idU .

Theorem (Lichtenbaum)

Let A be a topological G-module and Ã = HomCG (−,A). Then
Hn(T L

G , pt, Ã) = Hn
ss(G ,A), Wigner’s semisimplicial cohomology.
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Application: Weil-étale Cohomology

Let K be a number field.

Lichtenbaum “combined” many T L
G ’s, where the G ’s are local

Weil groups of K and the global Weil group of K , and
constructed the Grothendieck topology TK .

Euler characteristics of TK should be related to special values
of ζK .
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The Cochain Theories

The definitions will be given as the cohomologies of complexes of
inhomogeneous cochains:

Hn
∗ (G ,A) = Hn(Cn

∗ (G ,A), δn)∞n=0

δn : Cn
∗ (G ,A)→ Cn+1

∗ (G ,A)

δn(f )(g0, . . . , gn) = g0 · f (g1, . . . , gn)

+
n∑

k=1

(−1)k f (g0, . . . , gk−1gk , . . . , gn)

+ (−1)n+1f (g0, . . . , gn−1)
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Continuous and Measurable Cochain Theories

Continuous Cochain Theory

Cn
c (G ,A) = {continuous maps Gn → A}

Measurable Cochain Theory

Cn
m(G ,A) = {measurable maps Gn → A}
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Locally Continuous Theories

Locally Continuous Cochain Theory

Cn
lc(G ,A) =

{
maps Gn → A continuous on a

neighborhood of (e, . . . , e)

}

Locally Continuous Measurable Cochain Theory

Cn
lcm(G ,A) =

{
measurable maps Gn → A continuous on a

neighborhood of (e, . . . , e)

}
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Reinterpretation as Cohomologies of Grothendieck Topologies

Theorem (Minevich)

There exist Grothendieck topologies T c
G ,T

m
G ,T

lc
G ,T

lcm
G and

sheaves FA for a topological G-module A on these topologies, such
that Hn

∗ (G ,A) ∼= Hn(T ∗G , pt,FA).
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Description of the Grothendieck Topologies

Underlying Categories

T c
G : G -spaces and continuous G -maps

Tm
G : G -spaces and measurable G -maps

T lc
G : pointed G -spaces (X , x) and G -maps f : (X , x)→ (Y , y)

with f (x) = y that are continuous on a neighborhood of x

T lcm
G : pointed G -spaces (X , x) and measurable G -maps

f : (X , x)→ (Y , y) with f (x) = y that are continuous on a
neighborhood of x

Coverings

Single morphisms {f : X → Y } such that there is a section
s : Y → X that is almost a morphism in the respective category: s
must satisfy all properties except it need not be a G -map.
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The Sheaves FA

For T c
G and Tm

G , FA = Hom(−,A).

For T lc
G , FA(X , x) is the set of G -maps f : X → A continuous

on a neighborhood of x (f (x) need not be 0).

For T lcm
G , FA(X , x) is the set of measurable G -maps

f : X → A continuous on a neighborhood of x .
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Morphisms of Grothendieck Topologies

Definition

A morphism of Grothendieck topologies g : T1 → T2 is a functor
Cat(T1)→ Cat(T2) which preserves fibered products and
coverings.

Let S(T ) be the category of sheaves of abelian groups on T .

A morphism g : T1 → T2 induces a functor
g∗ : S(T2)→ S(T1) given by g∗F (X ) = F (gX ).

Lemma

If for every X ∈ Cat(T1) and every covering {Yi → gX} in T2

there is a covering {Xj → X} in T1 such that {gXj → gX} refines
{Yi → gX}, then g∗ is exact.
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The Use of Single Morphisms

Lemma

If g∗ is exact, then for every X ∈ Cat(T1), every sheaf F on T2,
and all n > 0 we have Hn(T1,X , g∗F ) = Hn(T2, gX ,F ).

Lemma (Minevich)

Suppose that in a Grothendieck topology T , {fi : Xi → X} is a
covering if and only if {

∐
fi :
∐

Xi → X} is a covering. Let T 1 be
the topology on Cat(T ) whose coverings are single-morphism
coverings in T . Then for the morphism g : T 1 → T which is the
identity on Cat(T ), g∗ is exact.

Applies to T L
G

Possible application to Weil-étale cohomology
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Map from Hn
ss(G ,A) to Hn

m(G ,A)

Theorem (Minevich)

If G is second countable, there are natural maps
Hn
ss(G ,A)→ Hn

m(G ,A).

Proof

Grothendieck topology T L,1
G ,sc

Category: second countable G -spaces and continuous G -maps

Coverings: single-morphism coverings in T L
G

Natural morphisms T L
G

α←− T L,1
G ,sc

β−→ Tm
G

α∗ and β∗ are exact.

Inclusion α∗Ã ↪→ β∗FA
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Maps from Hn
ss(G ,A) to Hn

lc(G ,A) and Hn
lcm(G ,A)

Theorem (Minevich)

There are natural maps Hn
ss(G ,A)→ Hn

lc(G ,A). If G is second
countable, there are natural maps Hn

ss(G ,A)→ Hn
lcm(G ,A).

Proof

Grothendieck topology T L,1
G ,sc,∗

Category: second countable pointed G -spaces and continuous
G -maps f : (X , x)→ (Y , y) with f (x) = y

Coverings: single-morphism coverings in T L
G

Natural morphisms T L
G

α←− T L,1
G ,sc,∗

β−→ T lcm
G

α∗ and β∗ are exact.

Inclusion α∗Ã ↪→ β∗FA
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Statement of the Theorem

MG is the category of topological G -modules

Mpm
G is the category of pseudometrizable topological

G -modules

Mcm
G is the category of completely metrizable topological

G -modules

Theorem (L. Brown - Minevich)

If G is “weakly separable” and A,B ∈Mcm
G then for all n

ExtnMG
(A,B) ∼= ExtnMpm

G
(A,B) ∼= ExtnMcm

G
(A,B)

We can define Hn(G ,A) = ExtnMG
(Z,A).

For completely metrizable A, we can work in Mcm
G instead.
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Definitions for Topological Spaces

Definition

A topological space X is pseudometrizable if its topology is
induced by a pseudometric, i.e. a “metric” d for which we could
have d(x , y) = 0 without x = y.
X is completely metrizable if its topology is induced by a metric d
under which X is complete.

Definition

A topological group G is weakly separable if for every open set U
in G, the covering {xU}x∈G has a countable subcovering.
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Proper Morphisms and Exact Sequences

Definition

A morphism f : A→ B in an additive category is proper if its
image is well-defined, i.e. Coker(ker f )

∼−→ ker(Coker f ).

In the categories MG ,Mpm
G , and Mcm

G , f : A→ B is proper
iff it is open as a map onto its image.

An injection A ↪→ B is proper iff it is a homeomorphism onto
its image.

Definition

A sequence A
f−→ B

g−→ C is exact if f and g are proper, g ◦ f = 0,
and Im(f )

∼−→ ker g.
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Definition of Yoneda Ext

Extn(A,B) = {exact sequences 0→ B → En → · · · → E1 → A→ 0}/ ∼

where ∼ is the equivalence relation generated by commutative
diagrams

0 → B → En → · · · → E1 → A → 0
|| ↓ ↓ ||

0 → B → E ′n → · · · → E ′1 → A → 0
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The Proof

The hard part is showing ExtnMG
(A,B) = ExtnMpm

G
(A,B).

The key is in showing that, if we have a proper injection
i : B ↪→ E where B is a pseudometrizable G -module and E is
any topological G -module, then there is a coarser topology on
E with which i is still a proper injection and E is a
pseudometrizable topological G -module.

This uses the fact that a topological group is
pseudometrizable iff it is first countable

We construct a good basis for E at 0 using the balls of radius
1/n in B
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