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Abstract
We will talk about some of the history behind the celebrated Bloch-Kato
conjectures and develop the terminology necessary to state the most basic

conjecture, about the order of the zero of the L-function of a pure
geometric p-adic representation of the absolute galois group of a number

field at s = 0. We will also talk about related conjectures, especially that of
Birch and Swinnerton-Dyer and, if time permits, the other Bloch-Kato

conjecture and motivic cohomology.

Recall the Dedekind zeta-function:

ζK(s) =
∑
a

1

(Na)s
=

∏
p

1

1− (Np)−s

First, in the 19th century, it was found that

Theorem. We have ζK(s) ∼ cK(s− 1)−1 as s→ 1, where

cK =
2r1(2π)r2√
|dK |

hR

w

where dK is the discriminant of K, w = |(O∗K)tor| is the number of roots of
unity in F , h is the class number of K, and R is the regulator of K.

Hecke discovered the functional equation for ζK in the 1930’s. This can
be used to show:

Theorem. We have ζF ∼ cKs
r1+r2−1 as s→ 0, with cK = −hR/w.
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Also, the functional equation can be used to find the order of zeroes at
−n of ζK , n ∈ N.

Next came Birch and Swinnerton-Dyer in the 1960’s:

(a) The order of the zero of L(E, s) at s = 1 equals the rank r of E(Q)

(b) |XE/Q| <∞ (recall XE/Q =
⋂
v ker(H1(GK , E)→ H1(GKv , E))).

(c) L(E, s) ∼ cE(s− 1)r as s→ 1, with

cE =
2r|XE/Q|| deth|
|E(Q)tor|2

ΩE

where X is the Tate-Shafarevich group, h is the height pairing, and ΩE

is the real period.

Then, work on K-theory (by Grothendieck, Bass, Milnor, Gerstein, and
Quillen) allowed Borel to invent his regulator and state a conjecture about
the residues at −n.

Deligne made a conjecture regarding the residues of the L function of a
number field, to multiplication by a rational number, at "critique" integers.
An integer n is "critique" if the Γ-functions in the functional equation don’t
have a pole at n or at the point corresponding to n in the equation. This cor-
responds to there being no "regulator" term in the answer, so no non-torsion
motivic cohomology (K-theory) around. Then Beilinson (1984) [Bĕı84] gen-
eralized the conjecture to also include a conjecture on the order of the zero
of the L-function at s = 0, by using K-theory to work with ‘critique’ points.
He invented his own regulator, which maps algebraic K-theory of algebraic
varieties over R to real Deligne cohomology. It was much later proved (2002)
that the Borel regulator is twice the Beilinson regulator. Then, Bloch and
Kato [BK90] (1990) made a conjecture which nails down the correct for-
mula up to sign, which works for all positive numbers. Finally, Fontaine
and Perrin-Riou (1994) [FPR94] made a conjecture giving the order of the
zero and the residue at all integers, up to sign. It is unclear whether or not
Fontaine and Perrin-Riou’s conjecture is actually a generalization of Bloch
and Kato’s, since the relationship of the local factors at places v | p to the
original Bloch-Kato conjecture is not clear.

2



The rest of this talk is a summary of Bellaïche’s notes [Bel09], for which
I am extremely grateful.

In this talk, I will only discuss the part of the Bloch-Kato conjecture that has
to do with the order of the zero of the L-function at s = 0. Throughout this
talk, V will be a geometric p-adic representation of GK for K a number field
(so we have a continuous linear map GK

ρ−→ Aut(V ), where V is a Qp-vector
space).

Definition 1. An l-adic representation V is geometric if it is semisimple
and V =

⊕
w∈Z Vw, where Vw is pure of weight w.

Definition 2. An l-adic representation V of GK is pure of weight w if
there is a finite set Σ of places v of K such that, for all v /∈ Σ, V is unramified
and the characteristic polynomial Pv of Frobenius at v has roots in Q̄ with
complex absolute values qw/2v .

Recall a representation V is unramified at a place v of K if the inertia
group I(v) acts trivially on V (I(v) ⊆ ker(ρ)).

A geometric representation is unramified almost everywhere, and de Rham
at all places v | p.

We will not be discussing what it means to be de Rham, crystalline, etc.
You can read about it in [FO].

Conjecture 1 (Fontaine-Mazur). Every geometric representation is isomor-
phic to a subquotient of H i

ét(X,Qp)(n) for a proper smooth variety X over
K.

Conjecture 2 (Langlands-Fontaine-Mazur). Every geometric irreducible p-
adic representation of GK is automorphic.

Conjecture 3 (Bloch-Kato). If V is pure then

dimH1
f (GK , V

∗(1))− dimH0(GK , V
∗(1)) = ords=0 L(V, s) (1)

First we will define H1
f , then the L-function. To define the global H1

f , we
need to first define the local H1

f ’s.
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1 Definition of the H1
f ’s

Let K be a finite extension of Ql.

Definition 3. For l 6= p,H1
f (GK , V ) := H1

ur(GK , V ) := ker(H1(GK , V ) →
H1(IK , V )). For l = p,H1

f (GK , V ) := ker(H1(GK , V ) → H1(GK , V ⊗Qp

Bcrys)).

The ‘f’ for the l = p case is the letter between ’e’ (exponential) and ’g’
(geometric):
H1
e (GK , V ) = ker(H1(GK , V ) → H1(GK , V ⊗ Bφ=1

crys )) (where φ is the Crys-
talline Frobenius)
H1
g (GK , V ) = ker(H1(GK , V )→ H1(GK , V ⊗BdR))

and H1
e ⊆ H1

f ⊆ H1
g , and dimension-wise the analogies are vertically as

follows:

l 6= p 0 ⊆ H1
ur(GK , V ) ⊆ H1(GK , V )

l = p 0 ⊆ H1
e (Gk, V ) ⊆ H1

f (GK , V ) ⊆ H1
g (GK , V ) ⊆ H1(GK , V )

There is a short exact sequence

0→ Dcrys(V )φ=1/V GK → DdR(V )/D+
dR(V )

e−→ H1
e (GK , V )→ 0

and the map e is the Bloch-Kato exponential because, in the case where V
is the Tate module for an abelian variety A over K, it can be identified with
(the tensorization with Qp of) the exponential map from an open subgroup
of the Lie algebra of A to A(K).

Proposition 1. (1) H i(GK , V ) = 0 for i > 2.

(2) H i(GK , V )×H2−i(GK , V
∗(1))

∪−→ H2(GK ,Qp(1)) = Qp is a perfect pair-
ing.

(3) dimH0(GK , V ) − dimH1(GK , V ) + dimH2(GK , V ) = 0 if l 6= p and
[K : Qp] dimV if l = p.

Under the duality,H1
f (GK , V )⊥ = H1

f (GK , V
∗(1)), for any l,H1

e (GK , V )⊥ =

H1
g (GK , V

∗(1)), and H1
g (GK , V )⊥ = H1

e (GK , V
∗(1)).
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Definition 4. Let K be a number field. H1
f (GK , V ) = {x ∈ H1(GK , V ) |

xv ∈ H1
f (G(v), V ) for all v -∞.

Here are two examples which show H1
f is an interesting object to study.

We can construct local Kummer morphisms for commutative group schemes
over the local fields and glue them to get O∗K ⊗Zp Qp(1) ∼= H1

f (GK ,Qp(1)).
For an elliptic curve E over a number field K, H1

f (GK , Vp(E)) ∼= Selp(E),
where Vp(E) = lim←−A[pn](K̄)⊗Zp Qp is the Tate module of the elliptic curve
and Selp(E) = {x ∈ H1(GK , Vp(E)) | xv ∈ κv(E(Kv)). So we have an injec-
tion E(K)⊗ZQp ↪→ H1(GK , Vp(E)) which is an isomorphism iff |X(E)[p∞]| <
∞.

2 L-Functions
Fix an embedding Qp

ι−→ C.

Definition 5. The Euler factor for v - p,∞ as Lv(V, s) := det((Frob−1
v q−sv −

id)|V I(v))−1, where qv is the order of the residue field at v and Frobv has
complex entries via ι.

The Euler factor v | p is defined using the theory of crystalline represen-
tations.

Definition 6. L(V, s) =
∏

v-∞ Lv(V, s).

Theorem. L(V, s) is a well-defined meromorphic function with no zeroes on
the half-plane <s > w/2 + 1 for any pure representation V of weight w ∈ Z.

Conjecture 4. For a pure representation V of weight w, L(V, s) has a mero-
morphic continuation to C and no zeroes with real part at least w/2 + 1.
If V is irreducible, L(V, s) has no poles except if V ∼= Qp(n), in which case
there is a unique pole at s = n+ 1, which is simple.

This is known if V is automorphic, and it is expected we will need to
prove every geometric representation is automorphic before we can prove
this result.
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3 More on the Bloch-Kato Conjecture
e.g. V = Qp: this says rkZO∗K = r1 + r2 − 1 (Dirichlet’s Unit Theorem)
e.g. V = Vp(E), the Tate module of an elliptic curve E/K. V ∗(1) ∼= V by
the Weil pairing, so this says dimH1

f (GK , Vp(E)) = ords=1 L(E, s). But we
know dimH1

f ≥ rkE(K), with equality iff |X(E)[p∞]| <∞. So BSD implies
Bloch-Kato in this case and, if |X(E)[p∞]| < ∞ then BSD is equivalent to
Bloch-Kato.

The H0 term is 0 unless V contains Qp(1). It accounts for the pole pre-
dicted by the conjecture about L(V, s).
One can define a function L∞(V, s) and then set Λ(V, s) := L(V, s)L∞(V, s).
e.g. Λ(Qp, s) = ζK(s)ΓR(s)r1ΓC(s)r2 , where

ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s)

and r1 = number of real places, r2 = number of complex places.

Conjecture 5. Λ(V ∗(1),−s) = ABsΛ(V, s), where A,B depend on V .

This is known for automorphic representations.

The way one tries to approach this conjecture is to split it up into ≥ and ≤
in equation 1. To prove ≥, it is a matter of constructing extensions of Qp by
V ∗(1) that land in H1

f , i.e. nontrivial extensions between Galois represen-
tations with prescribed local properties. To prove ≤, one has the following
theorem:

Theorem. Under some assumptions, which are true for most representations
attached to modular forms, if L has an analytic continuation and Λ satisfies
the functional equation, then the Bloch-Kato conjecture for V is equivalent
to the conjecture for V ∗(1), which implies ≤ if V is pure of weight w 6= −1.

4 Motives and the Other Bloch-Kato Conjec-
ture

There is another Bloch-Kato conjecture, about mixed motives, which is now
proven ([Bel09] discusses both of these conjectures). For any field K, let
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V PSK be the category of varieties that are projective and smooth over
K. There are numerous cohomlogy theories for this category, including
étale cohomology, de Rham cohomology, Betti cohomology, and crystalline
cohomology. Grothendieck conjectured that there is a Q-linear, abelian,
graded, semisimple category MK of "pure iso-motives" (or just motives)
and contravariant functors H i : V PSK → MK through which all other
cohomology functors factor. This means there are realization functors
like Realp : MK → (p-adic representations of GK), Realι : MK → Ab,
and RealdR : MK →(filtered K-vector spaces) such that H i

ét(X,Qp) =
Realp ◦H i(X), etc. There should also be other properties: comparison for
various K, existence of tensor products and dual objects inMK , etc.

Conjecture 6 (Grothendieck-Serre). H i(X,Qp) is a semi-simple represen-
tation of GK.

This is known for abelian varieties and in a few other cases.

Conjecture 7 (Tate). (H2q(X,Qp)(q))
GK is generated over Qp by the classes

of sub-varieties Z of codimension q.

These two conjectures imply that the functor Realp is fully faithful, hence
the category MK is equivalent to the category of p-adic representations of
GK coming from geometry (i.e. subquotients of H i(X,Qp)(n) for some i, n,
and X).

Let W be the extension 1 → V → W → Qp → 1 given by some nonzero
x ∈ H1

g (V,GK). We cannot expect this representation to come from a pure
motive, but we do expect it comes from a mixed motive. The category
MMK of mixed motives should be not semi-simple or graded in any inter-
esting way, and it should containMK as a full subcategory. It should be to
MK as (varieties over K) is to V PSK . It is expected that Realp induces an
isomorphism

Ext1
MMK

(Q,M) ∼= H1
g (GK , V )

where Realp(Q) = Qp and Realp(M) = V . It is possible to define what
should be Ext1

MMK
(Q,M) when M = H i(X) using the K-theory of X, and

this case is the other conjecture of Bloch and Kato. It has been proven by
Voevodsky.

Here are a few remarks on the literature. See [Tat95] for more information
on the Birch and Swinnerton-Dyer conjecture. For background information
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necessary to understand the conjecture, see [FO]. See [BK90] for Bloch and
Kato’s conjecture and [FPR94] for its extension by Fontaine and Perrin-Riou.
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