Intriguing Problems for Students in a Proofs Class

Igor Minevich
Boston College

AMS - MAA Joint Mathematics Meetings
January 5, 2017

Outline

(1) Induction
(2) Numerical Invariant
(3) Pigeonhole Principle

Induction: The Square

Prove that you can cut a square into n squares for any $n \geq 6$.

Induction: The Chocolate

If a chocolate bar is made of $n 1 \times 1$ pieces, how many times do you need to break it to separate it into 1×1 pieces? (You can only break one piece at a time).

Induction: L-omino tiling

Explain how to tile a $2^{n} \times 2^{n}$ checkerboard with one square missing using L-ominoes:

See the Kadon Enterprises, Inc. booth at the JMM exhibits to see this in action!

Induction: 2×2-Coloring

Let's say a chessboard is 2×2-colored if it is colored in 4 colors such that every 2×2 area is colored in all 4 distinct colors. Prove that the four corners of a 2×2-colored 1000×1000 board are colored in all 4 distinct colors.

Numerical Invariant: The Birds

There are 6 trees in a row, one bird on each. Each hour two birds take off and each lands on a tree adjacent to where it was. Can they ever all end up on the same tree? (Hint: parity)

Pigeonhole Principle: Divisibility

Show that in any set of n numbers, there is a subset whose sum is divisible by n.

Pigeonhole Principle: Independence Problems

How many knights/queens/kings/bishops can you put on a chessboard so no piece can hit another in one move?
e.g. Kings:

K		K		K		K	
K		K		K		K	
K		K		K		K	
K		K		K		K	

Sources

- Algebra and Number Theory for Mathematical Schools by Alfutova, N.B. and Oostinov, A.V. (in Russian)
- Everything You Always Wanted To Know About Mathematics* (*But didn't even know to ask): A Guided Journey Into the World of Abstract Mathematics and the Writing of Proofs by Brendan Sullivan with John Mackey
- A Math Teachers' Circle problem related to me by Maksym Fedorchuk

Thank you so much for your attention!

Multiplying Pieces

You start with three pieces (say circles) in the lower-left corner of a grid that extends infinitely far to the right and up:

A valid move is to replace a piece by two pieces: one to the right of the original and one just above the original, provided both of those spots are empty.

Multiplying Pieces

Example sequence of valid moves:

Question. Can you ever move all the pieces out of the three bottom-left spaces?

Multiplying Pieces: Hint

.\cdot	.\cdot	.\cdot	.\cdot	.\cdot	.\cdot
2^{-4}	$\cdot \cdot$.\cdot	.\cdot	.\cdot	.\cdot
2^{-3}	2^{-4}	.\cdot	.\cdot	.\cdot	.\cdot
2^{-2}	2^{-3}	2^{-4}	.\cdot	.\cdot	.\cdot
2^{-1}	2^{-2}	2^{-3}	2^{-4}	.\cdot	.\cdot
1	2^{-1}	2^{-2}	2^{-3}	2^{-4}	.\cdot

The sum of these numbers over all places where there are pieces is invariant.

The Square: Hint

Prove that you can cut a square into n squares for any $n \geq 6$.

The Chocolate Bar: Hint

If a chocolate bar is made of $n 1 \times 1$ pieces, how many times do you need to break it to separate it into 1×1 pieces?

Hint: Break it anywhere! Count how many squares remain in each piece.

L-omino tiling: Hint

Explain how to tile a $2^{n} \times 2^{n}$ checkerboard with one square missing using L-ominoes:

Hint: Break up the board into quarters.

2×2-Coloring: Hint

Let's say a chessboard is 2×2-colored if it is colored in 4 colors such that every 2×2 area is colored in all 4 distinct colors. Prove that the four corners of a 2×2-colored 1000×1000 board are colored in all 4 distinct colors.

Hint: Prove the $2 \times 2 N$ case, then use that and induction on M to prove the $2 M \times 2 N$ case. Show that the two left corners have colors disjoint from the two right corners.

The Birds: Hint

Six trees, one bird on each. Each hour two birds take off and each lands on a tree adjacent to where it was. Can they ever all end up on the same tree?

Hint: Consider the sum of distances from some tree $(\bmod 2)$, or the sum of birds on every other tree $(\bmod 2)$

Divisibility: Hint

Show that in any set of n numbers, there is a subset whose sum is divisible by n.

$$
\begin{aligned}
& \quad \text { Hint: } \\
& x_{1} \\
& x_{1}+x_{2} \\
& x_{1}+x_{2}+x_{3} \\
& \vdots \\
& x_{1}+x_{2}+x_{3}+\cdots+x_{n}
\end{aligned}
$$

