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Abstract
We will be talking about a subject, almost no part of which is yet
completely defined. I will introduce the Weil group, Grothendieck
topologies (if needed), and the Weil-etale topology which Steve
Lichtenbaum defined for schemes over a finite field. I will also talk about
how it relates to special values of zeta-functions.

1 Introduction

Today we will be talking about Professor Lichtenbaum’s paper on the Weil-
étale topology and what turned out to be a better definition given by Thomas
Geisser.

2 Definitions and Basics

X = scheme of finite type over k = F,.
X=X Xk k.

Definition 1. Let G be a group of automorphisms of a scheme X. We say G
acts on a sheaf F on the étale topology on X if we have a compatible system
of maps Yy : F'— 0, F for allo € G [i.e. Yyr = 0,1, 0, and ;g = id].

Note that we have a Galois action of Z = Gal(k/k) on X over X. Let
'y 2 Z denote the powers of Frobenius in Z.

Definition 2. A Weil-étale sheaf F on X is an étale sheaf on X with a
I'y-action.



Definition 3. The Weil-étale cohomology is defined by Hy, (X, F) = Ty(F) =
F(X)%, and Hi,(X, F) are defined to be the right derived functors of HY,.

Here are the tools that are used to compute Weil-étale cohomology:
Let p : Shyy x — Shg ¢ be the forgetful functor, and ¢ : Sh¢, x — Shyy x
take F' to w7 F' with the induced action of T'y.

Fact 1. For F' € Shy x there is a functorial map of spectral sequences from
HP(Z, H (X, 7 F)) = HE (X, F)

to
HP(Z, Hy (X, 71 (F))) = Hy (X, ¢(F))

Since cdZ = 1, the last spectral sequence breaks up into short exact sequences
0 — H'(Z, HY (X, 7} (F))) = Hiy (X, ¢(F)) — HZ, H (X, 7{(F))) = 0

Finally, there are natural maps ¢; : HL (X, F) — Hy(X,d(F)) which are
isomorphisms when the sheaf F' is torsion.

3 Duality Theorem for Non-singular Curves

We define the sheaf G,, on Wx by ¢(G,, x), where G, x is the sheaf G,, on
the étale topology on X.

Theorem 1. Suppose U is a smooth curve over k, U connected. Then
H},,(U,Gy,) is finitely generated for all g and zero for ¢ > 3. If U is also
projective then

k*, qg=0
Pic(U), q=1
(U, G) = § O 12
0, q=>3

The étale cohomology of G,, is the same for ¢ = 0,1; 0 for ¢ = 2; and
Q/Z for ¢ = 3. [Milne’s notes on étale cohomology| In the situation of
theorem 1, let j : U — X be an open dense embedding of U in a smooth
projective curve X over k, and let F' € Shyy x. Since X has finite cohomo-
logical dimension [cd X < oo in the étale topology, and the second spectral
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sequence then shows cd X < oo for the Weil-étale topology], we can define
RUWFE € D*(Shyy x) [by taking an injective resolution of F', and replacing F'
by a sufficiently far-out truncation]. By applying I'x we get a natural map
in D(Ab) from RHomyy (F,G,,) to RHompap (RIwW(F), RT'W(G,y)). Then,
since Hy,(X,G,,) = Z and H},(X,G,,) = 0 for ¢ > 3 we get a natural map
in D(Ab) from RI'W(G,,) to Z|—2|. Composing with the previous map, we
get a map rp : RHomyy (F, G,,) — RHompap (RT'W(F), Z[-2]).

Theorem 2. kp is an isomorphism when F = j7Z or j(Z/nZ).

The significance of this theorem is that kjz is the duality isomorphism
showing that the cohomology of G,, is dual, with respect to RHom(—,7Z) =
RHom(—, Z[—2]), to the cohomology of Z.

Proof. First let F' = j(Z/nZ). [l will mean F' as both an étale and Weil-étale
sheaf] The following diagram is commutative in D(Ab):

RHomg x(F,Gp) =% RHomap(RT&F, Rl (Gr)) < RHomuy(RTe x F,Q/Z[—3])
¢¢ US ¢¢>
Ry, B

RHOIIlw(F, Gm) — RHOIHA(,(RFV\;F, Rrw(Gm)) — RHOHlAb(Rer, Z[—Q])

Deninger = « o RI'y is the duality isomorphism interpreting class field
theory for function fields in terms of étale cohomology. [The homology of
RHomg (F, G,,) is Ext’ (F, G,,) and that of RHomp(ap) (Rl & F, Q/Z[—3]) is
the Pontryagin dual of H*>7/(X, F). The induced maps on homology come
from the Yoneda pairing, and Deninger shows they are isomorphisms, hence
the maps induce a quasi-isomorphism, so we get an isomorphism in the de-
rived category.]

The rightmost map is an isomorphism because ¢ : R['«F — RIyF and
RHom p(ap) (Rl s F, Q) = 0 [since RI's F is killed by n] so the exact sequence
0 —Z — Q — Q/Z — 0 induces the exact sequence RHom(RI¢ F, Q[—3]) —
RHom(RT & F,Q/Z[—3]) — RHom(RT'«F,Z[—2]) — RHom(RI'«F,Q[—2])
where the first and last terms are 0. It is now enough to show that the left-
most map is an isomorphism.

We prove that ¢ takes the étale version of different sheaves to the same
sheaves in the Weil-étale topology, i.e. preserves them. Let Z = X \ U with
the induced reduced structure and ¢ : Z — X the natural inclusion. First



you show that ¢ preserves Ext?(i.Z,G,,). [Details: in both the étale and
Weil-étale topologies, there is a natural isomorphism Hom(i,Z, F) = i'F for
any sheaf F', so Ext?(i,Z, F) & R%'F, and R%'G,, = 0 for ¢ # 1 and Z
if ¢ = 1.] Since ExtY(Z,G,,) = G,, if ¢ = 0 and 0 otherwise, ¢ preserves
Ext?(Z,G,,). The exact sequence

0= 22 — 7 — 1,7 — 0
then shows that ¢ preserves Ext?(jiZ, G,,). Then the exact sequence
0757 — Z/nZ — 0

shows ¢ preserves Ext?(5(Z/nZ),G,,). Finally, the map of local to global
spectral sequences

Hcléat(Xa MgtU!(Z/nZ)v Gn)) = EthtJrq(j!(Z/nZ)a Gm)

to
H, (X, Exty)y, (31(Z/nZ), Gp)) = Exth(ji(Z/nZ), G,,)

which is an isomorphism on the E5? terms since the sheaves are torsion,
hence on the E" terms, shows that the left map induced by ¢ is a quasi-

isomorphism, hence an isomorphism in the derived category. Thus the proof
for F' = j(Z/nZ) is done.

Now we have to prove this for F' = jZ. We have the following map of
triangles in D(Z):

M 5 M - M, — Ml

19 19 Jon 19

N % N —= N, — N
where M~ = RHOIHV\/’)((L]'!Z, Gm), N = RHOle(RPW)(]’]Z, Z[—Q]), Mn and
N, are the same with jZ replaced by ji(Z/nZ), g = kjz, and g, = Kj,z/nz)
is a quasi-isomorphism. It is an easy fact from derived categories that, in this

scenario, if the homology groups of M and N are finitely generated then g
is a quasi-isomorphism.

And indeed they are, because RHomyy x (jiZ, (G,,)x) = RHomyy ¢(Z, (G,,)v)
RT'v (G,,), whose cohomology groups are finitely generated and zero for
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large i by theorem 1. [Details: 7* has the exact left adjoint 7, so j* takes
injectives to injectives. And j* is exact, so it carries a resolution of G,, x to
a resolution of j*(G,,) x = (Gy,)v. Homy(Z, (G)v) = T'y(G,,) - same proof
as usual in algebraic geometry - implies RHomy (Z, (G,,)v) = RT'y(Gy).]

O

4 Zeta Functions

Let I'y denote the subgroup Z C 7 generated by the Frobenius automor-
phism. Then H'(k,Z) = H'(Ty,Z) = Hom(Ty,Z) [The category of étale
sheaves on k is Ab; the category of Weil-étale sheaves is Z[Z]-modules]. Let
0 € H'(k,Z) represent the element corresponding to the homomorphism tak-
ing Frob to 1. For any scheme X over k, we also denote by § € H'(X,Z)
the pullback of § € H'(k,Z). For any Weil-étale sheaf F' there is a natural
pairing F' ® Z — F induced by x ® n + nax. This pairing in turn induces
a map Uf : Hi,(X,F) — H}i' (X, F). §U6 = 0 [since it is induced from
the pullback of § U6 € H*(k,Z) = 0] so this makes the cohomology groups
(Hjy(X, F)) into a complex. Let hi, (X, F) be the homology groups of this
complex.

Conjecture 1. U = a quasi-projective variety over k, 7 : U — X an open
dense immersion of U in a projective variety X. If U is smooth or U is a
curve then:

(1) The cohomology groups Hiy(X, 51 7Z) are finitely generated abelian groups
which are zero for large i and are independent of j and X.

(2) Let r; be the rank of Hi,(X,HZ). Then > (—1)'r; = 0.

(3) The order ay of the zero of Z(U,t) att =1 is >_(—1)%r;.
(4) The homology groups hi, (X, HZ) are finite.

(5) Time Z(U, £)(1 — 1) = £x(X, jiZ) = [T, [P (X, G)| -
where Z(U,t) = exp(D oo Nyt"/r).

Theorem 3. The conjecture is true if U s projective and smooth, or if U is
a smooth surface with X smooth, or if U is any curve.



5 Geisser’s Definition

Unfortunately, virtually every part of Professor Lichtenbaum’s conjecture
that was not proven is false, as shown by Geisser and Weibel. So, following
the idea of Voevodsky of defining a Grothendieck topology generated by
Nisnevich covers and abstract blowups, Geisser made the following definition.

Definition 4. The étale h-topology, or eh-topology on a subcategory
of the category of schemes is the Grothendieck topology generated by étale
coverings and abstract blowups, meaning if we have a cartesian square

7 =Zxx X 5 X
s I
A 4HoX

where f is proper, i is a closed embedding, and f induces an isomorphism

X'NZ' 5 XN Z, then {X' 5 X, Z 5 X} is a covering.

Voevodsky’s topology has better properties for singular schemes than Nis-
nevich’s topology, and likewise the eh-topology has better properties than the
etale topology. Following are some examples of covers in this topology:

1) A scheme X is covered by its irreducible components.

(1)
(2) X4 — X is a covering.

(3) For a blowup X’ of X with center Z, {X' — X, Z — X} is a covering.
(4)

4) A proper morphism p : X’ — X such that Vo € X Jy € p~!(x)|k(y) =
k(x) [they have the same residue field] is a covering, called a proper
eh-covering.

Proposition 1. Every eh-covering of X has a refinement of the form {U; —
X" — Xtier where {U; — X}ier is an étale cover and X' — X is a proper
eh-covering.

Definition 5. A Weil eh-sheaf F' on Sch /F, is an eh-sheaf on Sch /F,
together with a Z-action. Weil-eh cohomology is defined as before by the
derived functors of F — F(X)Z.

With this definition, all the corresponding parts of Professor Lichten-
baum’s conjecture are true.



6 Details

The following commutative diagram of functors induces the map of spectral
sequences:
Xé — ]Nﬁét — Z-mod
¥ 3
Shwj x — Z-mod — Ab

Theorem 4. If X is connected, then

7, qg=0,1
H)\(X,Z) = Hz(X,Z2)/(Q/Z), q=2
Hgt(X7Z)7 q=>3

Otherwise, X is a finite disjoint union of schemes. In either case, all these
groups are finite.

The étale cohomology is finite, 0 for ¢ = 1 and ¢ >> 0, Q/Z® (finite
group) for ¢ = 2, and Z for ¢ = 0. [Milne’s paper, Values of Zeta Functions
of Varieties over Finite Fields]

Theorem 5. U = smooth d-dimensional quasi-projective variety over k,d <
2. Let 7 : U — X be the open immersion into a resolution of singularities X
for U (i.e. X is smooth projective). Then Hy\,(X,jiZ) is finitely generated
for all q, zero for q large, and independent of the choices of j and X.

Key idea used twice in the proof: suppose j : U — X and j' : U — X’ are
two such immersions. Replace X’ by the closure of the image of U in X x X’
induced by j and j’ (or by the smooth projectivization of the latter). Then
there is a map 7 : X’ — X such that 7o j' = j, and it turns out 7.j/Z = jiZ
and you go from there.



