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Abstract
We will be talking about a subject, almost no part of which is yet
completely defined. I will introduce the Weil group, Grothendieck

topologies (if needed), and the Weil-etale topology which Steve
Lichtenbaum defined for schemes over a finite field. I will also talk about

how it relates to special values of zeta-functions.

1 Introduction

Today we will be talking about Professor Lichtenbaum’s paper on the Weil-
étale topology and what turned out to be a better definition given by Thomas
Geisser.

2 Definitions and Basics

X = scheme of finite type over k = Fq.
X̄ = X ×k k̄.

Definition 1. Let G be a group of automorphisms of a scheme X. We say G
acts on a sheaf F on the étale topology on X if we have a compatible system
of maps ψσ : F → σ∗F for all σ ∈ G [i.e. ψστ = σ∗ψτ ◦ ψσ and ψid = id].

Note that we have a Galois action of Ẑ = Gal(k̄/k) on X̄ over X. Let
Γ0
∼= Z denote the powers of Frobenius in Ẑ.

Definition 2. A Weil-étale sheaf F on X is an étale sheaf on X̄ with a
Γ0-action.
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Definition 3. The Weil-étale cohomology is defined by H0
W(X,F ) = ΓW(F ) =

F (X̄)Z, and H i
W(X,F ) are defined to be the right derived functors of H0

W .

Here are the tools that are used to compute Weil-étale cohomology:
Let ρ : ShW,X → Shét,X̄ be the forgetful functor, and φ : Shét,X → ShW,X

take F to π∗1F with the induced action of Γ0.

Fact 1. For F ∈ Shét,X there is a functorial map of spectral sequences from

Hp(Ẑ, Hq
ét(X̄, π

∗
1F ))⇒ Hp+q

ét (X,F )

to
Hp(Z, Hq

ét(X̄, π
∗
1(F )))⇒ Hp+q

W (X,φ(F ))

Since cdZ = 1, the last spectral sequence breaks up into short exact sequences

0→ H1(Z, Hq
ét(X̄, π

∗
1(F )))→ Hq+1

W (X,φ(F ))→ H0(Z, Hq+1
ét (X̄, π∗1(F )))→ 0

Finally, there are natural maps ci : H i
ét(X,F ) → H i

W(X,φ(F )) which are
isomorphisms when the sheaf F is torsion.

3 Duality Theorem for Non-singular Curves

We define the sheaf Gm on WX by φ(Gm,X), where Gm,X is the sheaf Gm on
the étale topology on X.

Theorem 1. Suppose U is a smooth curve over k, Ū connected. Then
Hq
W(U,Gm) is finitely generated for all q and zero for q ≥ 3. If U is also

projective then

Hq
W(U,Gm) =


k∗, q = 0
Pic(U), q = 1
Z, q = 2
0, q ≥ 3

The étale cohomology of Gm is the same for q = 0, 1; 0 for q = 2; and
Q/Z for q = 3. [Milne’s notes on étale cohomology] In the situation of
theorem 1, let j : U → X be an open dense embedding of U in a smooth
projective curve X over k, and let F ∈ ShW,X . Since X has finite cohomo-
logical dimension [cdX < ∞ in the étale topology, and the second spectral
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sequence then shows cdX < ∞ for the Weil-étale topology], we can define
RΓWF ∈ Db(ShW,X) [by taking an injective resolution of F , and replacing F
by a sufficiently far-out truncation]. By applying ΓX we get a natural map
in D(Ab) from RHomW(F,Gm) to RHomD(Ab)(RΓW(F ), RΓW(Gm)). Then,
since H2

W(X,Gm) = Z and Hq
W(X,Gm) = 0 for q ≥ 3 we get a natural map

in D(Ab) from RΓW(Gm) to Z[−2]. Composing with the previous map, we
get a map κF : RHomW(F,Gm)→ RHomD(Ab)(RΓW(F ),Z[−2]).

Theorem 2. κF is an isomorphism when F = j!Z or j!(Z/nZ).

The significance of this theorem is that κj!Z is the duality isomorphism
showing that the cohomology of Gm is dual, with respect to RHom(−,Z) =
RHom(−,Z[−2]), to the cohomology of Z.

Proof. First let F = j!(Z/nZ). [I will mean F as both an étale and Weil-étale
sheaf] The following diagram is commutative in D(Ab):

RHomét,X(F,Gm)
RΓét−−→ RHomAb(RΓétF,RΓét(Gm))

α−→ RHomAb(RΓét,XF,Q/Z[−3])
↓φ ↓φ ↓φ

RHomW(F,Gm)
RΓW−−−→ RHomAb(RΓWF,RΓW(Gm))

β−→ RHomAb(RΓWF,Z[−2])

Deninger ⇒ α ◦ RΓét is the duality isomorphism interpreting class field
theory for function fields in terms of étale cohomology. [The homology of
RHomét(F,Gm) is ExtiX(F,Gm) and that of RHomD(Ab)(RΓétF,Q/Z[−3]) is
the Pontryagin dual of H3−i(X,F ). The induced maps on homology come
from the Yoneda pairing, and Deninger shows they are isomorphisms, hence
the maps induce a quasi-isomorphism, so we get an isomorphism in the de-
rived category.]

The rightmost map is an isomorphism because φ : RΓétF
∼−→ RΓWF and

RHomD(Ab)(RΓétF,Q) = 0 [since RΓétF is killed by n] so the exact sequence
0→ Z→ Q→ Q/Z→ 0 induces the exact sequence RHom(RΓétF,Q[−3])→
RHom(RΓétF,Q/Z[−3]) → RHom(RΓétF,Z[−2]) → RHom(RΓétF,Q[−2])
where the first and last terms are 0. It is now enough to show that the left-
most map is an isomorphism.

We prove that φ takes the étale version of different sheaves to the same
sheaves in the Weil-étale topology, i.e. preserves them. Let Z = X rU with
the induced reduced structure and i : Z → X the natural inclusion. First
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you show that φ preserves Extq(i∗Z,Gm). [Details: in both the étale and
Weil-étale topologies, there is a natural isomorphism Hom(i∗Z, F ) ∼= i!F for
any sheaf F , so Extq(i∗Z, F ) ∼= Rqi!F , and Rqi!Gm = 0 for q 6= 1 and Z
if q = 1.] Since Extq(Z,Gm) = Gm if q = 0 and 0 otherwise, φ preserves
Extq(Z,Gm). The exact sequence

0→ j!Z→ Z→ i∗Z→ 0

then shows that φ preserves Extq(j!Z,Gm). Then the exact sequence

0→ Z n−→ Z→ Z/nZ→ 0

shows φ preserves Extq(j!(Z/nZ),Gm). Finally, the map of local to global
spectral sequences

Hp
ét(X,Extqét(j!(Z/nZ),Gm))⇒ Extp+qét (j!(Z/nZ),Gm)

to
Hp
W(X,ExtqW(j!(Z/nZ),Gm))⇒ Extp+qW (j!(Z/nZ),Gm)

which is an isomorphism on the Epq
2 terms since the sheaves are torsion,

hence on the En terms, shows that the left map induced by φ is a quasi-
isomorphism, hence an isomorphism in the derived category. Thus the proof
for F = j!(Z/nZ) is done.

Now we have to prove this for F = j!Z. We have the following map of
triangles in D(Z):

M · n−→ M · → M ·
n → M ·[1]

↓g ↓g ↓gn ↓g
N ·

n−→ N · → N ·n → N ·[1]

where M · = RHomW,X(j!Z,Gm), N · = RHomZ(RΓW,Xj!Z,Z[−2]),M ·
n and

N ·n are the same with j!Z replaced by j!(Z/nZ), g = κj!Z, and gn = κj!(Z/nZ)

is a quasi-isomorphism. It is an easy fact from derived categories that, in this
scenario, if the homology groups of M · and N · are finitely generated then g
is a quasi-isomorphism.

And indeed they are, because RHomW,X(j!Z, (Gm)X) ∼= RHomW,U(Z, (Gm)U) ∼=
RΓW,U(Gm), whose cohomology groups are finitely generated and zero for
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large i by theorem 1. [Details: j∗ has the exact left adjoint j!, so j∗ takes
injectives to injectives. And j∗ is exact, so it carries a resolution of Gm,X to
a resolution of j∗(Gm)X = (Gm)U . HomU(Z, (Gm)U) ∼= ΓU(Gm) - same proof
as usual in algebraic geometry - implies RHomU(Z, (Gm)U) ∼= RΓU(Gm).]

4 Zeta Functions

Let Γ0 denote the subgroup Z ⊆ Ẑ generated by the Frobenius automor-
phism. Then H1(k,Z) = H1(Γ0,Z) = Hom(Γ0,Z) [The category of étale
sheaves on k̄ is Ab; the category of Weil-étale sheaves is Z[Z]-modules]. Let
θ ∈ H1(k,Z) represent the element corresponding to the homomorphism tak-
ing Frob to 1. For any scheme X over k, we also denote by θ ∈ H1(X,Z)
the pullback of θ ∈ H1(k,Z). For any Weil-étale sheaf F there is a natural
pairing F ⊗ Z → F induced by x ⊗ n 7→ nx. This pairing in turn induces
a map ∪θ : H i

W(X,F ) → H i+1
W (X,F ). θ ∪ θ = 0 [since it is induced from

the pullback of θ ∪ θ ∈ H2(k,Z) = 0] so this makes the cohomology groups
(H i
W(X,F )) into a complex. Let hiW(X,F ) be the homology groups of this

complex.

Conjecture 1. U = a quasi-projective variety over k, j : U → X an open
dense immersion of U in a projective variety X. If U is smooth or U is a
curve then:

(1) The cohomology groups H i
W(X, j!Z) are finitely generated abelian groups

which are zero for large i and are independent of j and X.

(2) Let ri be the rank of H i
W(X, j!Z). Then

∑
(−1)iri = 0.

(3) The order aU of the zero of Z(U, t) at t = 1 is
∑

(−1)iiri.

(4) The homology groups hiW(X, j!Z) are finite.

(5) limt→1 Z(U, t)(1− t)−aU = ±χ(X, j!Z) =
∏

i |hi(X, j!Z)|(−1)i.

where Z(U, t) = exp(
∑∞

r=1 Nrt
r/r).

Theorem 3. The conjecture is true if U is projective and smooth, or if U is
a smooth surface with X smooth, or if U is any curve.
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5 Geisser’s Definition

Unfortunately, virtually every part of Professor Lichtenbaum’s conjecture
that was not proven is false, as shown by Geisser and Weibel. So, following
the idea of Voevodsky of defining a Grothendieck topology generated by
Nisnevich covers and abstract blowups, Geisser made the following definition.

Definition 4. The étale h-topology, or eh-topology on a subcategory
of the category of schemes is the Grothendieck topology generated by étale
coverings and abstract blowups, meaning if we have a cartesian square

Z ′ = Z ×X X ′
i′−→ X ′

↓f ′ ↓f

Z
i−→ X

where f is proper, i is a closed embedding, and f induces an isomorphism

X ′ r Z ′
∼−→ X r Z, then {X ′ f−→ X,Z

i−→ X} is a covering.

Voevodsky’s topology has better properties for singular schemes than Nis-
nevich’s topology, and likewise the eh-topology has better properties than the
etale topology. Following are some examples of covers in this topology:

(1) A scheme X is covered by its irreducible components.

(2) Xred → X is a covering.

(3) For a blowup X ′ of X with center Z, {X ′ → X,Z → X} is a covering.

(4) A proper morphism p : X ′ → X such that ∀x ∈ X ∃y ∈ p−1(x)|k(y) ∼=
k(x) [they have the same residue field] is a covering, called a proper
eh-covering.

Proposition 1. Every eh-covering of X has a refinement of the form {Ui →
X ′ → X}i∈I where {Ui → X}i∈I is an étale cover and X ′ → X is a proper
eh-covering.

Definition 5. A Weil eh-sheaf F on Sch /Fq is an eh-sheaf on Sch /F̄q
together with a Z-action. Weil-eh cohomology is defined as before by the
derived functors of F 7→ F (X̄)Z.

With this definition, all the corresponding parts of Professor Lichten-
baum’s conjecture are true.
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6 Details

The following commutative diagram of functors induces the map of spectral
sequences:

X̃ét → k̃ét → Ẑ-mod
↓φ ↓

ShW,X → Z-mod → Ab

Theorem 4. If X is connected, then

Hq
W(X,Z) =


Z, q = 0, 1
H2

ét(X,Z)/(Q/Z), q = 2
Hq

ét(X,Z), q ≥ 3

Otherwise, X is a finite disjoint union of schemes. In either case, all these
groups are finite.

The étale cohomology is finite, 0 for q = 1 and q >> 0, Q/Z⊕ (finite
group) for q = 2, and Z for q = 0. [Milne’s paper, Values of Zeta Functions
of Varieties over Finite Fields]

Theorem 5. U = smooth d-dimensional quasi-projective variety over k, d ≤
2. Let j : U → X be the open immersion into a resolution of singularities X
for U (i.e. X is smooth projective). Then Hq

W(X, j!Z) is finitely generated
for all q, zero for q large, and independent of the choices of j and X.

Key idea used twice in the proof: suppose j : U → X and j′ : U → X ′ are
two such immersions. Replace X ′ by the closure of the image of U in X×X ′
induced by j and j′ (or by the smooth projectivization of the latter). Then
there is a map π : X ′ → X such that π ◦ j′ = j, and it turns out π∗j

′
!Z = j!Z

and you go from there.
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