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Abstract
For an abstract group G, there is only one “canonical” theory Hn(G,A) of

group cohomology for a G-module A. If G is a topological group,
however, there are many cohomology theories Hn(G,A) for a topological

G-module A. We will discuss some of these and talk about when they
give the same results. Some of the topics discussed will be Yoneda Ext’s,

Grothendieck topologies, cohomology of profinite groups, and
applications to number theory. No prerequisites are necessary except

basic category theory.

1 Introduction

For an abstract group G, there is one “canonical” cohomology theory
(Hn(G,A))∞n=0 for G-modules A, defined by Hn(G,A) = Extn(Z,A), where
the Ext’s are taken in the category G-mod of G-modules. Equivalently,
Hn(G,A) is the n-th right-derived functor of the functor from G-mod to
Ab, the category of abelian groups, taking A to AG, the group of points
of A that are fixed by G. Note that HomG-mod(Z,A) = AG and Extn(Z,−)
are the derived functors of Hom(Z,−); this is why the two are equivalent
definitions. There are at least two other equivalent definitions. One is via
the cohomology of the complex (Cn

h(G,A), δh
n : Cn

h(G,A)→ Cn+1
h (G,A))∞n=0 of
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homogeneous cochains, where Cn
h(G,A) = HomG(Gn+1,A) and

δh
n( f )(x0, . . . , xn+1) =

n+1∑
k=0

(−1)k f (x0, . . . , x̂k, . . . , xn)

The elements of Cn
h(G,A) are called homogeneous cochains. The other

equivalent definition is via the cohomology of the complex (Cn(G,A), δn :
Cn(G,A) → Cn+1(G,A))∞n=0 of inhomogeneous cochains, where Cn(G,A) is
the set of all maps Gn

→ A, G0 = {∗} is a point, and

(δn( f ))(x0, . . . , xn) = x0 f (x1, . . . , xn) (1.1)

+

n∑
k=1

(−1)k f (x0, . . . , xk−2, xk−1xk, xk+1, . . . , xn+1) + f (x0, . . . , xn−1)

From now on, let G be a topological group. We want a cohomology
theory on the category MG of topological G-modules A1 that utilizes the
topologies of both G and A. Since MG is not abelian, we cannot define
derived functors of the functor A 7→ AG from MG to Ab. But we can
almost do so by using Yoneda’s Ext’s. This is only way of generalizing the
usual cohomology, and there are many others, using for example cochain
definitions, Grothendieck topologies, and other tools. For other theories,
see [Wig73], [HM62], [FW12], [Seg70], and [Sta78], among others.

2 Yoneda Ext Definition

In this section we first define quasi-abelian S-categories, as Yoneda did,
and then use them to define cohomology theories for topological groups.

A morphism f : A → B in an additive category is proper, or strict, if
the natural map coker(ker f ) → ker(coker f ) is an isomorphism and, in
particular, these kernels and cokernels exist. In this case, the object associ-

ated to coker(ker f ) is called the image Im( f ) of f 2. A sequence A
f
−→ B

g
−→ C

is exact if f and g are proper, g◦ f = 0, and the natural map Im( f )→ ker(g)

1A topological G-module A is both a G-module and a topological abelian group such
that the action G × A→ A is continuous.

2Technically, this object is not unique, but only unique up to isomorphism.
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is an isomorphism.

An S-category (C,S) is an additive category C together with a class S
of morphisms of C such that:

(S1) All isomorphisms are in S, and all maps in S are proper.

(S2) For any two morphisms f : A → B, g : C → D in S, the morphism
f ⊕ g : A ⊕ C→ B ⊕D is in S.

(S3) If φ ∈ S then kerφ ∈ S and cokerφ ∈ S.

(S4) Any f ∈ S can be written f = me, where m, e ∈ S,ker m = 0, coker e = 0,
and any such composition me is in S.

The class P(C) of all proper morphisms satisfies all these properties and
so is the largest possible class S for C. An S-category is quasi-abelian if it
satisfies the following four conditions.

(Q0) A composition of epimorphisms in S is an epimorphism in S.

(Q0*) A composition of monomorphisms in S is a monomorphism in S.

(Q2) Every pullback of an epimorphism in S exists and is (an epimor-
phism) in S.

(Q2*) Every pushout of a monomorphism in S exists and is (a monomor-
phism) in S.

A category C is quasi-abelian if (C,P(C)) is quasi-abelian.

It turns out that the category MG of all topological G-modules and con-
tinuous G-equivariant maps is quasi-abelian. In fact, every morphism
f : A→ B inMG has a kernel and a cokernel, but f is proper if and only if
the induced map A→ Im(A) is an open map, when Im(A) is considered as
a subspace of B.

For any quasi-abelian S-category (C,S), we can define Extn
C,S(A,B) to be

the class of extensions (long exact sequences)

X : 0→ B→ En → · · · → E1 → A→ 0
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modulo the equivalence relation generated by commutative diagrams

X : 0 → B → En → · · · → E1 → A → 0
|| ↓ ↓ ||

X′ : 0 → B → E′n → · · · → E′1 → A → 0

It turns out that

1. Extn
C,S(A,B) is an abelian group (see [Yon60, p. 537] for more details.);

2. for any Z ∈ C, any short exact sequence 0 → A
f
−→ B

g
−→ C → 0 in S

(i.e. with f , g ∈ S) gives a long exact sequence

0→ HomC(Z,A)→ HomC(Z,B)→ HomC(Z,C)→ Ext1
C,S(Z,A)→ · · ·

3. and there is a universality property: for any collection of functors
(hn)∞n=0 from C to Ab and any natural transformation η0 : h0

→

HomC(Z,−), if any short exact sequence as above in S gives a long
exact sequence

h0(A)→ h0(B)→ h0(C)→ h1(A)→ · · ·

then there are unique natural transformations ηn : Extn
C,S(Z,−) → hn

that extend η0.3

For any class S of morphisms ofMG such that (MG,S) is quasi-abelian,
we can then define a cohomology theory by Hn(G,A) = Extn

MG,S(Z,A),
where Z has trivial G-action and discrete topology.

3 Cochain Definitions

One way to define cohomology theories Hn(G,A) is via inhomogeneous
cochains4: we set Cn(G,A) = MorC(Gn,A), n = 0, 1, . . . , where G0 = {∗} is a
point and C is one of at least three categories:

1. CG
c , the category of G-spaces and continuous maps;

3This means for any short exact sequence in C, the induced diagram of long exact
sequences is commuative.

4We could also define each cochain theory by using homogeneous cochains instead.
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2. CG
m, the category of G-spaces and measurable5 maps;

3. CG
lcm, the category of pointed G-spaces (X, x) measurable maps f :

(X, x)→ (Y, y) which are locally continuous, i.e. there is an open set
U of x such that f |U is continuous (with f (x) = y).6

Then we define the inhomogeneous coboundary operator δn just as before
by equation (1.1). These categories give cohomology theories

1. Hn
c (G,A), called the continuous cochain theory;

2. Hn
m(G,A), called the measurable cochain theory;

3. Hn
lcm(G,A), called the locally continuous measurable cochain theory

respectively, and these are in general not the same, but7

Hn
c (G,A) ⊆ Hn

lcm(G,A) ⊆ Hn
m(G,A)

There are classes S of morphisms inMG corresponding to the various
cohomology theories. These classes S are defined by insisting that a short
exact sequence

0→ A→ B
φ
−→ C→ 0 (3.1)

is in S if and only if φ has a section in the corresponding category C. These
short exact sequences yield long exact sequences

· · · → Hn(G,A)→ Hn(G,B)→ Hn(G,C)→ Hn+1(G,A)→ · · ·

for the corresponding cohomology theories. For example, if φ has a con-
tinuous section, there is a long exact sequence on cohomology (and not
otherwise, in general, as the following example shows).

5A map f : X → Y of topological spaces is (Borel-)measurable if the preimage f−1(U)
of every open set U in Y is in the Borel σ-algebra, the σ-algebra generated by the open sets
in X.

6Technically, in this case we should say Cn(G,A) = Mor
C

G
lcm

((Gn, (1, . . . , 1)), (A, 0)).
7It is not immediately obvious why Hn

c (G,A) ⊆ Hn
lcm(G,A), but with a simple argument

using a short exact sequence of complexes, one can show that Hn
c (G,A) would be the same

if one replaced CG by the category of pointed G-spaces and continuous G-equivariant
maps.
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Example computation. If G is connected and A is discrete, then Cn
c (G,A)

consists of constant maps, so Hn
c (G,A) = 0 for n > 0. We leave it as an easy

exercise to the reader to show that the action of G on A must be trivial,
using the continuity of G × A → A. Now consider the exact sequence of
trivial S1-modules

0→ Z→ R π
−→ S

1
→ 0 (3.2)

Note that π has no continuous section, so theorem 3.2 does not imply there
is a long exact sequence on cohomology corresponding to (3.2). Indeed,
the sequence

H1(S1,Z)→ H1(S1,R)→ H1(S1,S1)→ H2(S1,Z)

is not exact. By the above remark, H1(S1,Z) = H2(S1,Z) = 0, and
H1(S1,R) = Homcont(S1,R) = 0 because there are no nontrivial contin-
uous homomorphisms from S1 to R. On the other hand, H1(S1,S1) =
Homcont(S1,S1) , 0.

It should be noted that if we work in the categoryMP
G of complete metric

second-countable Hausdorff8 G-modules, then any epimorphism B
φ
−→ C

has a measurable section. It is easy to see that MP
G is also quasi-abelian.

So all exact sequences inMP
G yield long exact sequence on cohomology for

the measurable cochain theory.

Theorem 3.1. If G is locally compact, second countable, and Hausdorff, then
Extn

MP
G,P(MP

G)(Z,A) = Hn
m(G,A).

Theorem 3.2. If G is locally compact, then Extn
MG,S(Z,A) = Hn

c (G,A), where S
is the class of morphisms corresponding to the class C of short exact sequences
(3.1) where φ has a continuous section.

At this point it is not known whether or not such a statement for
Hn

lcm(G,A).

Application. In class field theory, one computes the cohomology of profi-
nite groups G, with the profinite topology, by using Hn

c (G,A) for discrete
G-modules A. Note that a topological group is profinite if and only if it is
compact and totally disconnected.

8Such G-modules are called Polish.
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Theorem 3.3 ([Wig73]). If G is locally compact, σ-compact9, and zero-dimensional10,
and A is Polish, then Hn

c (G,A) = Hn
m(G,A) for all n.

4 Grothendieck Topologies

Definition 4.1. A Grothendieck topology11 T = (C,Cov(C)) is a category C
that has pullbacks together with a collection of coverings Cov(C) that consists of

collections {Ai
fi
−→ A} for each object A in C such that:

1. Isomorphisms are coverings, i.e. { f : A→ B} is a covering for any isomor-
phism f .

2. A pullback of a covering is a covering: if {Ai → A} is a covering and
f : B→ A is any map in C, then {Ai ×A B→ B} is a covering.

3. A covering of a covering is a covering: if {Ai → A} is a covering and for
each i we have a covering {Ai, j → Ai} then {Ai, j → A} is a covering.

Definition 4.2. A sheaf on a Grothendieck topology T = (C,Cov(C)) is a
contravariant functor from C to Ab such that for every covering {Ai → A} in
Cov(C) the induced diagram

F(A)→
∏

F(Ai)⇒
∏

F(Ai ×A A j)

is exact.

A theorem of Grothendieck says that the category of sheaves on any
Grothendieck topology has enough injectives, so one can define cohomol-
ogy Hn(T,X,F) for any object X in C and any sheaf F on T as the n-th
right-derived functor of F 7→ F(X).

9A space is σ-compact if it is the union of countably many compact subsets.
10The concept of dimension here is that of Lebesgue dimension: we say that for a space

X, dim X ≤ n if any covering {Ui} of X has a refinement {Vi} such that for all x ∈ X, x ∈ Vi
for at most n + 1 indices i. The dimension m of X is the smallest m such that dim X ≤ m
but not dim X ≤ m − 1 (if no such m exist, then dim X = ∞).

11Actually, this is what Grotendieck termed a “pretopology”; a pretopology generates a
topology, a notion which is defined using sieves. The category of sheaves for a pretopology
is the same as that for the topology generated by it, and that is all we really care about.

7



Another equivalent way of computing the standard group cohomology
Hn(G,A) is to let G-set be the category of G-sets and G-equivariant maps,

and define a topology T on G-set by letting {Xi
fi
−→ X} be a covering if

X =
⋃

fi(Xi). For any G-module A we have the sheaf Ã = HomG-set(−,A),
and it turns out Hn(G,A) = Hn(T, {∗}, Ã).

We can generalize this construction in many ways to get cohomology the-
ories of topological groups. For example, we can let CG

c,eq be the category of
G-spaces and continuous G-equivariant maps. We can define a system of
coverings on CG

c,eq in a number of different ways to get topologies T on CG
c,eq

and then define a cohomology theory by Hn(G,A) = Hn(T, {∗}, Ã), where
Ã = Hom

C
G
c,eq

(−,A), provided Ã is a sheaf. If Ã is a sheaf for all G-modules
A, the topology T is called subcanonical.

Some such ways of defining T may be more useful than others. Two
important cases are:

1. Let {Xi
fi
−→ X}i∈I be a covering if for all x ∈ X there is i ∈ I, a neigh-

borhood U of x in X, and a continuous map s : U → Xi such that
fi ◦ s = idU. The induced topology is subcanonical, and the cohomol-
ogy Hn

W(G,A) is the same as the one Wigner defined in [Wig73]; this
was proven by Lichtenbaum in [Lic09] and then used to construct his
Weil-étale topology for number fields, which led to conjectures about
special values of the zeta-function. For any short exact sequence (3.1)

such that {B
φ
−→ C} is a covering in T, we get a long exact sequence on

cohomology.

2. Let the only coverings for T = Tc be {X
f
−→ Y} such that there is a

continuous (not necessarily G-equivariant) section s of f . I proved
Hn(Tc, {∗}, Ã) = Hn

c (G,A) for all n.

3. Let Tm be the topology on the category CG
m,eq of G-spaces and measur-

able G-equivariant maps where the coverings are {X
f
−→ Y} such that

there is a measurable section s of f . I proved Hn(Tm, {∗}, Ã) = Hn
m(G,A).

4. Let Tlcm be the topology on the category CG
lcm,eq of pointed G-spaces

and measurable locally continuous G-equivariant maps where the
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coverings are {(X, x)
f
−→ (Y, y)} such that f has a locally continuous

measurable sections s. I proved Hn(Tlcm, {∗}, Ã) = Hn
lcm(G,A).

Theorem 4.3. [Wig73] If G is locally compact, σ-compact, finite-dimensional,
and A is Polish and has Wigner’s “property F”, then Hn

W(G,A) = Hn
m(G,A).

5 H2(G,A)

It is well-known that, for the standard theory of group cohomology, given
a G-module A, H2(G,A) classifies the extensions

1→ A→ E
ψ
−→ G→ 1 (5.1)

of abstract groups with the fixed action of G (i.e. such that the action of G
on A by conjugation is the same as the original action of G on A given in
the definition of A as a G-module). Note that this does not give an action
of G on E, so this is not an extension of G-sets.

Theorem 5.1. [Hu52] Given a topological G-module A, H2
c (G,A) classifies the

extensions (5.1) of topological groups with the fixed action of G on A such that the
map ψ has a continuous section.

Theorem 5.2. [Moo76] If G is locally compact, Hausdorff, and second countable,
and A is a second countable topological G-module whose topology is given by a
complete metric, then H2

m(G,A) classifies all extensions (5.1) of topological groups
with the fixed action of G on A.

Moore used this theorem as justification that his cohomology Hn
m(G,A)

may be the right generalization of the usual group cohomology theory to
topological groups and G-modules.

Theorem 5.3. With the assumptions in theorem 5.2, H2
lcm(G,A) classifies all

extensions (5.1) of topological groups with the fixed action of G on A such that ψ
has a local section.

It is not known whether or not H2(G,A) for Lichtenbaum’s cohomology
classifies the extensions (5.1) such that ψ has local sections. If this is true,
then it would seem that there should be an equivalent way of defining the
cohomology via cochains, since H2(G,A) is so closely related to the cochain
definition.
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