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Abstract
Let G be a topological group and A a topological G-module. Suppose we
are interested in the theory of cohomology groups Hn(G,A) but we want
to consider the topological data of G and A. How many ways are there to

make such a theory? Lots! We will go over the usual equivalent
definitions of group cohomology and talk about generalizing them to this
setting, how the theory falls apart into many pieces, and some attempts at

putting the pieces back together, one of which involves
pseudometrizability and complete metrizability of A. No prerequisites

are assumed.

1 Introduction

For an abstract group G, there is one “canonical” cohomology theory
(Hn(G,A))∞n=0 for G-modules A. It is well-known that the theory of group
cohomology has many applications in number theory, group theory, and
beyond. Now suppose we have a topological group G and a topological
G-module A (that is, a G-module that is an abelian topological group such
that the map G×A→ A is continuous). We could consider the topological
data of G and A and hope to obtain more detailed information from the
groups Hn(G,A). Indeed, this has found applications in probability theory
[Gui73], ergodic theory [AM13], and (most interesting to me) number the-
ory (see [Lic09], [Fla08], [KR12]). It turns out that the many definitions of
the usual group cohomology have strictly different generalizations when
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involving the topologies of G and A, so we might get different results de-
pending on which definition we use.

It may seem that the ultimate goal is then to find a definition of coho-
mology for topological groups that inherits all the nice properties from
group cohomology. But after more than 50 years of trying to find such
a nice definition, no one has completely succeeded (though some have
certainly come close) without restricting G and A. Indeed, it may be more
reasonable to develop a variety of cohomology theories which are useful
in their own ways. The purpose of this talk is to list some of the plausible
definitions for the cohomology of topological groups and mention a few
ways to restrict G and A so that some of the definitions coincide.

Some other good theories for the cohomology of topological groups not
mentioned here are [HM62], [FW12], [Seg70], and [Sta78].

2 Usual Definitions of Group Cohomology

Definitions 1 and 2. For an abstract group G and a G-module A, we define
Hn(G,A) = Extn(Z,A), where the Ext’s are taken in the category G-mod of
G-modules and Z has trivial G-action. Equivalently, Hn(G,−) is the n-th
right-derived functor of the functor from G-mod to Ab (the category of
abelian groups) taking A to AG, the group of elements of A that are fixed by
G. Note that HomG-mod(Z,A) = AG and Extn(Z,−) are the derived functors
of Hom(Z,−); this is why the two definitions are equivalent.

Definition 3. There is a third equivalent definition, using inhomogeneous
cochains (see the appendix for the definition using homogeneous cochains
instead). Consider the complex (Cn(G,A), δn : Cn(G,A) → Cn+1(G,A))∞n=0,
where Cn(G,A) is the set of all maps Gn

→ A (we treat G0 as a point so
C0(G,A) = A) and

(δn( f ))(x0, . . . , xn) = x0 f (x1, . . . , xn) (2.1)

+

n∑
k=1

(−1)k f (x0, . . . , xk−2, xk−1xk, xk+1, . . . , xn) + f (x0, . . . , xn−1)

The elements of Cn(G,A) are called inhomogeneous cochains. Hn(G,A) is
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the cohomology of this complex.

Definition 4. The last familiar equivalent definition is the singular co-
homology Hn(BG,A) of the classifying space BG of the discrete group G
with coefficients in A. Of course, if G is discrete, then this space is an
Eilenberg-Maclane space, i.e. a K(G, 1). Indeed, one way to generalize the
theory to topological groups G is to consider the cohomology Hn(BG,A) of
the classifying space BG for the topological group G, though this cannot
take into account the topology on A.

3 Wigner’s Cohomology

David Wigner [Wig73] invented a cohomology theory Hn
W(G,A) for topo-

logical groups which generalizes the cohomology Hn(BG,A) of the clas-
sifying space BG, that is, for discrete topological G-modules A we have
Hn

W(G,A) = Hn(BG,A)1. Here is how Wigner’s cohomology is defined.

We first construct a semisimplicial G-space S(G), i.e. a semisimplicial
object in the category of G-spaces and continuous G-maps. The n-simplex
Sn of S(G) is G × Gn, where G acts on G × Gn by left multiplication on the
first coordinate. The face maps di : Sn → Sn−1 are given by

di(g0, g1, . . . , gn) =

{
(g0, g1, . . . , gigi+1, . . . , gn), 0 ≤ i < n
(g0, . . . , gn−1), i = n

The degeneracy maps si : Sn → Sn+1 are given by

si(g0, . . . , gn) = (g0, . . . , gi−1, 1, gi, . . . , gn)

Consider the natural projections pn from Sn × A to Sn/G, which is isomor-
phic to the topological space Gn with trivial G-action. The face maps and
degeneracies of S(G) induce faces and degeneracies on the spaces Sn × A
and on the spaces Sn/G, producing two more semisimplicial spaces, and
these face maps and degeneracies commute with the pn. Let Tn be the sheaf
of germs of continuous sections of pn. Since g · 0 = 0 ∈ A for all g ∈ G, Tn

is isomorphic to the sheaf of germs of continuous A-valued functions on

1More precisely, if A is a discrete G-module, then Hn
W(G,A) is the sheaf cohomology of

BG with coefficients in the locally constant sheaf A.
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Sn/G. The Tn have face maps and degeneracies induced by those of S(G)
and thus form a semisimplicial sheaf T(G,A) over the Sn/G.

Now apply the (second) canonical semisimplicial resolution functor to
T(G,A) to get canonical flabby resolutions for each Tn, and thus a double
complex of groups of global sections. Let us explain. Note that the usual
canonical resolution of a sheaf F is obtained by letting C0(F) =

∏
x∈X(ix)∗Fx,

embedding F in C0(F), taking the quotient F1, embedding F1 in C0(F1), etc.
to get the resolution 0 → F → C0(F) → C0(F1) → · · · . Here we mean
instead the resolution 0 → F → C0(F) → C0(C0(F)) → · · · . Denote by
0 → Tn → T1,n → T2,n → · · · the flabby resolution of Tn. For each i and
n we have a map Tn−1 → (di)∗Tn, hence maps T j,n−1 → (di)∗T j,n, and hence
maps Γ(Sn−1/G,T j,n−1) → Γ(Sn/G,T j,n). By taking the alternating sum of
these maps over i we get a map Γ(Sn−1/G,T j,n−1) → Γ(Sn/G,T j,n), hence a
double complex. Hn

W(G,A) is the cohomology of this double complex.

4 Cochain Definitions

To generalize definition 3 of section 2 to incorporate the topological data
of G and A we can set Cn(G,A) to be the set of

1. continuous maps Gn
→ A [Hu52],

2. measurable2 maps Gn
→ A [Moo76], or

3. locally continuous measurable maps f : Gn
→ A, i.e. those f which

are measurable, satisfy f (1, 1, . . . , 1) = 0 ∈ A, and such that f |U is
continuous for some neighborhood U of (1, 1, . . . , 1) ∈ Gn [KR12].

We define the inhomogeneous coboundary operator δn just as before by
equation (2.1). Taking cohomology of the resulting complexes gives coho-
mology theories

1. Hn
c (G,A), called the continuous cochain theory;

2. Hn
m(G,A), called the measurable cochain theory;

2A map f : X → Y of topological spaces is (Borel-)measurable if the preimage f−1(U)
of every measurable set U in Y is in the Borel σ-algebra of X, the σ-algebra generated by
the open sets in X.
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3. Hn
lcm(G,A), called the locally continuous measurable cochain theory

respectively, and these are in general not the same, but

Hn
c (G,A) ⊆ Hn

lcm(G,A) ⊆ Hn
m(G,A)

Theorem 4.1. Consider the short exact sequence of topological G-modules

0→ A→ B
φ
−→ C→ 0

Ifφ has a continuous global section (respectively, a measurable section, or a locally
continuous measurable section) then there is a long exact sequence on cohomology

· · · → Hn(G,A)→ Hn(G,B)→ Hn(G,C)→ Hn+1(G,A)→ · · ·

for the continuous (respectively, measurable, or locally continuous measurable)
cochain theory.

Example computation. If G is connected and A is discrete, then Cn
c (G,A)

consists of constant maps, so Hn
c (G,A) = 0 for n > 0. We leave it as an easy

exercise to the reader to show that the action of G on A must in fact be
trivial in this case, using the continuity of G × A → A. Now consider the
exact sequence of trivial S1-modules

0→ Z→ R π
−→ S1

→ 0 (4.1)

By the above remark, H1(S1,Z) = H2(S1,Z) = 0, and H1(S1,R) = Homcont(S1,R) =
0 because there are no nontrivial continuous homomorphisms from S1 to
R. On the other hand, H1(S1, S1) = Homcont(S1, S1) = Z , 0. Thus the
sequence

H1(S1,Z)→ H1(S1,R)→ H1(S1, S1)→ H2(S1,Z)

is not exact. Note that π does not have a continuous global section, even
though it has local sections everywhere. If π did have a continuous global
section, then we would indeed have a long exact sequence on cohomology.

It should be noted that if we work in the category MP
G of Polish (that

is, complete metric second-countable) G-modules, then any epimorphism

B
φ
−→ C has a measurable section. One can also topologize the groups

Hn
m(G,A), and this is part of what makes Moore’s measurable cochain the-

ory so attractive.
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Theorem 4.2 ([Wig73]). If G is locally compact, σ-compact3, and zero-dimensional4,
and A is Polish, then Hn

c (G,A) = Hn
m(G,A) for all n.

Application. In class field theory, one computes the cohomology of
profinite groups G, with the profinite topology, by using Hn

c (G,A) for dis-
crete G-modules A. Note that a topological group is profinite if and only
if it is compact and totally disconnected. In particular, theorem 4.2 applies
to this situation (as long as A is countable).

5 H2(G,A)

It is well-known that, for the standard theory of group cohomology, given
a G-module A, H2(G,A) classifies the extensions

1→ A→ E
ψ
−→ G→ 1 (5.1)

of abstract groups with the fixed action of G (i.e. such that the action of G
on A by conjugation is the same as the original action of G on A given in
the definition of A as a G-module). Note that this does not give an action
of G on E, so this is not an extension of G-sets.

Theorem 5.1. [Hu52] Given a topological G-module A, H2
c (G,A) classifies the

extensions (5.1) of topological groups with the fixed action of G on A such that the
map ψ has a continuous section.

Theorem 5.2. [Moo76] If G is locally compact, Hausdorff, and second countable,
and A is a second countable topological G-module whose topology is given by a
complete metric, then H2

m(G,A) classifies all extensions (5.1) of topological groups
with the fixed action of G on A.

Moore used this theorem as part of the justification that his cohomology
Hn

m(G,A) may be the “right” generalization of the usual group cohomology
theory to topological groups and G-modules.

3A space is σ-compact if it is the union of countably many compact subsets.
4The concept of dimension here is that of Lebesgue dimension: we say that for a space

X, dim X ≤ n if any covering {Ui} of X has a refinement {Vi} such that for all x ∈ X, x ∈ Vi
for at most n + 1 indices i. The dimension m of X is the smallest m such that dim X ≤ m
but not dim X ≤ m − 1 (if no such m exist, then dim X = ∞).
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Theorem 5.3. [KR12] With the assumptions in theorem 5.2, H2
lcm(G,A) classifies

all extensions (5.1) of topological groups with the fixed action of G on A such that
ψ has a local section.

6 Yoneda Ext Definition

In this section we generalize the definition Hn(G,A) = Extn(Z,A) to the
topological setting. We first define quasi-abelian S-categories, as Yoneda
did, and then use them to define cohomology theories for topological
groups.

A morphism f : A → B in an additive category is proper, or strict, if
the natural map coker(ker f ) → ker(coker f ) is an isomorphism and, in
particular, these kernels and cokernels exist. In this case, the object associ-

ated to coker(ker f ) is called the image5 Im( f ) of f . A sequence A
f
−→ B

g
−→ C

is exact if f and g are proper, g◦ f = 0, and the natural map Im( f )→ ker(g)
is an isomorphism.

An S-category (C,S) is an additive category C together with a class S of
morphisms of C such that:

(S1) All isomorphisms are in S, and all maps in S are proper.

(S2) For any two morphisms f : A → B, g : C → D in S, the morphism
f ⊕ g : A ⊕ C→ B ⊕D is in S.

(S3) If φ ∈ S then kerφ ∈ S and cokerφ ∈ S.

(S4) Any f ∈ S can be written f = me, where m, e ∈ S,ker m = 0, coker e = 0,
and any such composition me is in S.

The class P(C) of all proper morphisms satisfies all these properties and
so is the largest possible class S for C. An S-category is quasi-abelian if it
satisfies the following four conditions.

(Q0) A composition of epimorphisms in S is an epimorphism in S.

(Q0*) A composition of monomorphisms in S is a monomorphism in S.

5Technically, this object is not unique, but only unique up to isomorphism.
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(Q2) Every pullback of an epimorphism in S exists and is (an epimor-
phism) in S.

(Q2*) Every pushout of a monomorphism in S exists and is (a monomor-
phism) in S.

A category C is quasi-abelian if (C,P(C)) is quasi-abelian.

Primary example. The category MG of all topological G-modules and
continuous G-maps is quasi-abelian. In fact, every morphism f : A→ B in
MG has a kernel and a cokernel, but f is proper if and only if the induced
map A→ Im(A) is an open map, when Im(A) is considered as a subspace
of B.

For any quasi-abelian S-category (C,S), we can define Extn
C,S(A,B) to be

the class of extensions (exact sequences)

X : 0→ B→ En → · · · → E1 → A→ 0

modulo the equivalence relation generated by commutative diagrams

X : 0 → B → En → · · · → E1 → A → 0
|| ↓ ↓ ||

X′ : 0 → B → E′n → · · · → E′1 → A → 0

It turns out that

1. Extn
C,S(A,B) is an abelian group (see [Yon60, p. 537] for more details.);

2. for any Z ∈ C, any short exact sequence 0 → A
f
−→ B

g
−→ C → 0 in S

(i.e. with f , g ∈ S) gives a long exact sequence

0→ HomC(Z,A)→ HomC(Z,B)→ HomC(Z,C)→ Ext1
C,S(Z,A)→ · · ·

3. and there is a universality property: for any collection of functors
(hn)∞n=0 from C to Ab and any natural transformation η0 : h0

→

HomC(Z,−), if any short exact sequence as above in S gives a long
exact sequence

h0(A)→ h0(B)→ h0(C)→ h1(A)→ · · ·
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then there are unique natural transformations ηn : Extn
C,S(Z,−) → hn

that extend η0.6

For any class S of morphisms ofMG such that (MG,S) is quasi-abelian,
we can then define a cohomology theory by Hn(G,A) = Extn

MG,S(Z,A),
whereZ has trivial G-action and discrete topology (whether this cohomol-
ogy theory is useful or not then depends on the category C, the class S, the
applicability of the theory, etc.).

There are classes S of morphisms inMG corresponding to the cohomology
theories Hn

c (G,A),Hn
m(G,A),Hn

lcm(G,A) defined in section 4. These classes S
are defined by insisting that a short exact sequence

0→ A→ B
φ
−→ C→ 0 (6.1)

is in S if and only if φ has a section that is continuous, measurable, or
locally continuous and measurable, respectively.

Theorem 6.1. If G is locally compact, second countable, and Hausdorff, then
Extn

MP
G,P(MP

G)(Z,A) = Hn
m(G,A).

Theorem 6.2. If G is locally compact, then Extn
MG,S(Z,A) = Hn

c (G,A), where S
is the class of morphisms corresponding to the short exact sequences (6.1) where
φ has a continuous section.

At this point it is not known whether or not such a statement holds for
Hn

lcm(G,A).

7 Pseudometrics and Complete Metrics

In this section we will assume G is weakly separable7, that is, for any open
set U in G, the collection {gU | g ∈ G} has a countable subcover.

6This means for any short exact sequence in C, the induced diagram of long exact
sequences is commuative.

7This is the terminology used by Wigner and Lawrence Brown [Wig73]; it seems the
more modern terminology is trans-separable, where “trans” stands for “translation”
[Dre75]
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Let Mp
G be the category of pseudometric G-modules, that is, those topo-

logical G-modules whose topology is induced by a pseudometric (a pseu-
dometric d is “almost a metric” - it does not satisfy the condition that
d(x, y) = 0 ⇒ x = y). Let Mcm

G be the category of topological G-modules
whose topology is induced by a complete metric.

Theorem 7.1 (Lawrence Brown). If A and B are pseudometric G-modules, then
Extn

MG
(A,B) = Extn

M
p
G
(A,B) for all n, that is, any extension of pseudometric G-

modules by arbitrary G-modules is equivalent to an extension made up of only
pseudometric G-modules.

Proof. (Sketch). First consider the case n = 1. We have to show that if we
have an extension

0→ B
β
−→ E α

−→ A→ 0

where A and B are pseudometrizable, then E is pseudometrizable. We
will show that, in fact, the topology on E is the sup of the two topologies
TA and TB induced from the pseudometrics dA on A and dB on B, respec-
tively. The topologies TA and TB are pseudometrizable, and the sup of two
pseudometrizable topologies is also pseudometrizable (the pseudometric
is given by the sum of the two given pseudometrics). The topology TA is
easy to describe: it is given by the pseudometric d(x, y) = dA(α(x), α(y)).
The hard part is describing TB. We need the following beautiful theorem:

Theorem 7.2. [Wil70, Theorem 12.2.3] A topological group G is pseudometrizable
⇐⇒ G is first-countable ⇐⇒ the topology of G is induced by a left-invariant
pseudometric d (that is, d(gx, gy) = d(x, y) for all g, x, y ∈ G).

Using the fact that β is open onto its image (this is part of the definition
of an exact sequence), we can find a countable collection of open sets in E
whose intersections with B give a basis for B at 0 ∈ B and then use these
open sets to get a topology TB on E by translating them. The new topology
will be first countable, hence pseudometrizable. We need G to be weakly
separable so that the G-action on E is still continuous with the topology TB.

In the case n > 1, we have an extension

0→ B
β
−→ En

γn
−→ En−1

γn−1
−−−→ · · · → E1

α
−→ A→ 0

where A and B are pseudometrizable but E1, . . . ,En are not necessarily.
We construct a coarser, pseudometrizable, topology on En similarly to TB
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above. We then take the quotient Qn of En with the new topology by B
and consider the injection Qn → En−1. Now Qn is pseudometric, so we
can proceed as with En, replacing B by Qn. We continue this process until
we reach E1, on which we construct the sup of the topologies from Q2

and A as above. We thus get an extension of the same spaces, but now
with a different topology and easily find that the canonical map from the
old extension to the new one is a map in our category, hence the two are
equivalent. �

Theorem 7.3 (Lawrence Brown). If A and B are complete metric G-modules,
then Extn

Mcm
G

(A,B) = Extn
MG

(A,B) for all n, that is, any extension of even complete
metric G-modules by arbitrary G-modules is equivalent to an extension made up
of only complete metric G-modules.

This theorem justifies working with the cohomology theories defined
by Extn(Z,A) in the category of complete metric G-modules as opposed to
the larger category of all topological G-modules.

8 Appendix: Homogeneous Cochains

Instead of considering Cn(G,A) = Map(Gn,A), we consider Cn
h(G,A) =

MapG(Gn+1,A), the set of all G-equivariant maps Gn+1
→ A and the cobound-

ary operator

δh
n( f )(x0, . . . , xn) =

n+1∑
k=0

(−1)k f (x0, . . . , x̂k, . . . , xn)

When working with the continous, measurable, or locally continuous mea-
surable cochain theory, Cn(G,A) is defined by using continuous, measur-
able, or locally continuous measurable maps instead, respectively. The
cohomology of the resulting complexes is the same as that of the com-
plexes of inhomogeneous cochains.
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