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Introduction

The subject of group cohomology is well-known to number theorists, topolo-

gists, and others. There are many different equivalent definitions of group coho-

mology. The question that has been pondered for many decades now (since at least

the 1950’s) is, what is the right generalization of group cohomology to a theory

(Hn(G,A))∞n=0 for a topological group G and a topological G-module A?

Let us look at the basic properties of group cohomology. H0(G,A) = AG, the

group of elements of A fixed by G. For a short exact sequence of G-modules,

we obtain a functorial long exact sequence on cohomology. Group cohomology

is universal in the sense of these two properties, that is, if we have another se-

quence of functors (hi) that give long exact sequences for short exact sequence of

G-modules and a natural transformation H0
→ h0 then there exist unique natural

transformations Hi
→ hi for all i which induce maps of long exact sequences for

every short exact sequence of G-modules. H1(G,A) classifies the crossed homo-

morphisms f : G→ A satisfying f (gh) = g f (h) + f (g), modulo the principal crossed

homomorphisms of the form f (g) = g · a − a for some a ∈ A. H2(G,A) classifies the

extensions of groups 1 → A → E → G → 1 of G by A such that the action of G on

A by conjugation is the same as the original action of G on A. Certainly, we would

want a cohomology theory for topological groups to satisfy these properties, but

one can hope for more: since there is topological data on G and A, we want to have

topological data on the groups Hn(G,A).

The first generalizations came with W. T. van Est’s exploration of the “smooth

cochain” theory for Lie groups and its relation with the Lie algebra cohomology

[32] and Sze-tsen Hu’s exploration of the “continuous cochain” theory [12]. These

were based on the usual cochain definition of group cohomology, except that now
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cochains were smooth / continuous. The smooth cochain theory was somewhat

specialized, and the continuous cochain theory did not give all the properties one

wanted for a cohomology theory of groups. For example, the theory does not give a

long exact sequence on cohomology for many short exact sequences of topological

G-modules.

Calvin Moore [21] defined a somewhat less restricted theory Hn
m(G,A) than

van Est’s, the measurable cochain theory, and showed it has all the properties

listed above. The main issue with this theory is that it is difficult to compute the

cohomology groups; a slightly less concerning issue is that G is restricted to be a

Hausdorff locally compact second countable group and A must be a Polish group

(i.e. a second countable Hausdorff complete metric group).

Graeme Segal [29] constructed a classifying space for an arbitrary category and

used it to construct a CW complex BG which acts as the classifying space for any

topological group. One can then compute the sheaf cohomology Hn(BG,A) for the

locally constant sheaf A, but this cannot account for any topology on A.

David Wigner, in [35] and his thesis [36], defined several new cohomology

theories by using Yoneda Ext’s, which naturally satisfy the universality property

mentioned above. He also constructed another theory Hn
ss(G,A) using a semisim-

plicial complex of sheaves. He showed Hn
ss(G,A) = Hn(BG,A) when A is discrete

and also showed that Hn
ss(G,A) coincides with Hn

m(G,A) under some special condi-

tions. My starting point in exploring the theory of topological group cohomology

was to give complete proofs of some of the claims Wigner made in [35]; these are

presented in Chapters 3 and 4.

G. J. Mitchison and Segal also developed another cohomology theory. By re-

stricting to locally contractible compactly generated Hausdorff G-modules A, they

were able to obtain contractible resolutions for all objects, and thus their theory

satisfied the universality condition mentioned above. Various other theories have

since been developed, and many are comparable in this setting [34].
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As of yet, Grothendieck topologies had not entered into the picture. Stephen

Lichtenbaum [17] gave the first interpretation of one of the established cohomology

theories, Wigner’s Hn
ss(G,A), in terms of a Grothendieck topology and used it to

develop a “Weil-étale topology” for number fields and formulate a deep conjecture

about special values of zeta functions for a number field. Inspired by his work,

Arati Khedekar and C. S. Rajan [15] defined the “locally continuous measurable

cochain theory” in an attempt at connecting topological group cohomology with

the Langlands program. M. Flach also used Grothendieck topologies to define

a cohomology theory for topological groups which was applied to the Weil-étale

topology [8].

With so many cohomology theories out there, one of the most important ques-

tions now is, when do they give the same results? One of the main ideas in this

thesis is that Grothendieck topologies may play an important role in the cohomol-

ogy theory for topological groups because they can be used to compare different

cohomology theories. Another advantage is their applicability, such as in [17]. A

third is that they give long exact sequences on cohomology for a specific class K of

short exact sequences, and it is very easy to give an explicit description of K from

the definition of the (coverings of the) Grothendieck topology (see Section 2.3).

In Chapter 2 we define several Grothendieck topologies whose cohomology is

the same as some of the well-established theories, namely the continuous cochain

theory, a natural generalization of the measurable cochain theory and the locally

continuous measurable cochain theory, and the locally continuous cochain theory

[34]. We also define some new cohomology theories which seem natural and

construct maps comparing various theories by using morphisms of Grothendieck

topologies.

3



Notation

S(T) is the category of sheaves of abelian groups on the Grothendieck topology T

S
′(T) is the category of sheaves of sets on the topology T

Cat(T) refers to the category underlying the topology T

G-mod is the category of G-modules

G-set is the category of G-sets

TG is the canonical topology on G-set

CG is the category of G-spaces for a topological group G

MG is the category of topological G-modules

Ã is the sheaf Hom(−,A) on any topology

∅ refers both to the empty set and any map out of one

pt is a set with one element

e is used to denote the identity in a group

1 is used to denote the group with one element

When the special element of a certain set is obvious, it will sometimes be

omitted. For example, the group G may denote the pointed set (G, e).

A neighborhood of a point x in a topological space means a set which contains

an open set U with x ∈ U.
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CHAPTER 1

Background

This chapter is devoted to basic results and definitions we will use later. In

Section 1.1 we go over the basic definitions and constructions in the theory of

Grothendieck topologies, mostly following [31]. Then we state some technical

lemmas about maps of sheaves (Section 1.1.2) and comparisons of Grothendieck

topologies (Section 1.1.3).

In Section 1.2 we go over Yoneda’s definition of Extn(A,B) in the setting of

quasi-abelian S-categories in detail. The Yoneda pullback is defined in Section

1.2.3 and is very important in the context of Grothendieck topologies (Section 2.3).

In Section 1.2.5 we prove a technical result which will allow us to compare the Ext

groups in different categories; we will use this result in Chapter 4. We show that

the Ext groups satisfy a universality condition with respect to a certain class of

short exact sequences in Section 1.2.6. This shows the importance of cohomology

theories defined using the Yoneda Ext’s.

In Section 1.3 we go over some basic properties of topological groups G, G-

spaces, and topological G-modules. Of particular importance is Section 1.3.3.2,

where we set the notation for the categories of G-modules we will use and prove

that these categories are quasi-abelian.

1.1. Grothendieck Topologies

1.1.1. Basics.

Definition 1.1.1. A Grothendieck topology1 T is a category, denoted Cat(T),

together with a collection of coverings {Xi → X}i∈I for every object X in Cat(T), satisfying

1This was actually called a pretopology by Grothendieck.
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the conditions below (so every object has associated with it a collection of such families of

maps {Xi → X}).

(1) If f : X→ Y is an isomorphism, then { f : X→ Y} is a covering.

(2) If {Xi → X} is a covering and f : Y → X is any morphism, then all fibered products

Xi ×X Y exist and {Xi ×X Y→ Y} is a covering (this property is referred to as stability

under base change).

(3) If {Xi → X}i∈I is a covering and for each i, {Xi, j → Xi} j∈Ji is a covering, then {Xi, j →

X}i∈I, j∈Ji is a covering.

Presheaves and Sheaves. A presheaf of sets (resp. abelian groups, etc.) on T

is a contravariant functor from C = Cat(T) to the category of sets (resp. abelian

groups, etc.). For a presheaf F, elements of F(X) are called sections. For a map

f : X → Y and a section s ∈ F(Y), we say F( f )s is the restriction of s to X, denoted

s|X. A sheaf (of sets, abelian groups, etc.) is a presheaf satisfying the property that

for every covering {Xi → X}i∈I in T the following diagram is exact:

F(X)→
∏
i∈I

F(Xi)⇒
∏
i, j∈I

F(Xi ×X X j)

This means for every collection of elements si ∈ F(Xi) such that the restriction

si|Xi ×X X j of si to Xi ×X X j is the same as the restriction of s j for all i, j ∈ I, there is a

unique element s ∈ F(X) with si = s|Xi for all i ∈ I.

A morphism of presheaves (or sheaves) is just a natural transformation. A

presheaf F is representable by the object X inC if F � Hom(−,X). If all representable

presheaves are sheaves, then the topology T is called subcanonical. There is

a unique largest subcanonical topology T on a category C, and it is called the

canonical topology. A Grothendieck topos is a category which is equivalent to the

category of sheaves on some topology.

Cohomology. It turns out that the category S(T) of sheaves of abelian groups

on T is always an abelian category that has enough injectives, so that we can take

injective resolutions of sheaves and define derived functors. For an object X in C

and presheaf F on T, we define Γ(X,F) = F(X). The functor Γ(X,−) from S(T) to Ab
6



has right-derived functors Hn(X,−), and we define the cohomology of T as Hn(X,F)

in this way. If it is necessary to emphasize the topology, we write Hn(T,X,F).

Main Example. Let G be a group and G-set the category of G-sets and G-maps.

The usual topology TG on this category is defined by setting the covers to be families

{Xi
fi
−→ X} such that X =

⋃
fi(Xi). It turns out that this is the canonical topology

and the category of sheaves of sets on TG is equivalent to G-set ; more precisely,

all sheaves are representable. This means G-set is a Grothendieck topos. The

category of sheaves of abelian groups on TG is equivalent to G-mod , the category

of G-modules; G-modules are precisely the abelian group objects in G-set . For a

G-module A, we denote by Ã the sheaf Hom(−,A). The cohomology Hn(TG, pt, Ã)

is precisely the usual group cohomology Hn(G,A).

Sheafification. There is a left adjoint to the natural inclusion of the category of

sheaves on a topology T into the category of presheaves. Given a presheaf P, we

define

P-(U) = lim
−−→
{Ui→U}

ker
(∏

P(Ui)⇒
∏

P(Ui ×U U j)
)

where the limit is taken over all coverings {Ui → U} and a map from one covering

{Ui
fi
−→ U}i∈I to another {V j

g j
−→ U} j∈J consists of a map φ : I → J of indices and maps

hi : Ui → Vφ(i) such that gφ(i) ◦ hi = fi. A map of coverings is called a refinement,

and if there is a map from a coveringU to another coveringV, we sayU refines

V. Then the left adjoint desired is given by P# = P--. P# is called the sheafification

of, or the sheaf associated to P.

Čech Cohomology. The Čech cohomology Hn({Ui → U}i∈I,F) for a presheaf

F and a covering {Ui → U} is defined to be the n-th cohomology of the complex

(Cn({Ui → U}i∈I,F), δn)n≥0 where

Cn({Ui → U}i∈I,F) =
∏

i0,...,in∈In+1

F(Ui0 ×U · · · ×U Uin)

and δn : Cn({Ui → U}i∈I,F)→ Cn+1({Ui → U}i∈I,F) is given by

δn(s)i0,...,in+1 =

n+1∑
k=0

(−1)k(si0,...,îk,...,in+1
| Ui0 ×U · · · ×U Uin+1)

7



The Čech cohomology Hn(U,F) is the direct limit of Hn({Ui → U}i∈I,F) over all the

coverings {Ui → U}i∈I of U. Note that the Čech cohomology Hn({Ui → U}i∈I,F) of

a covering does not depend on the topology T, but the Čech cohomology Hn(U,F)

does.

Morphism of Topologies. If we have two topologies T and T′, a morphism of

topologies g : T → T′ is a functor from Cat(T) to Cat(T′) which preserves the final

object and fibered products2, and takes coverings to coverings. Associated to g are

two functors on categories of sheaves. The first, the direct image g∗ : S(T′)→ S(T)

is defined by g∗F(X) = F(gX). The second, the inverse image g∗ : S(T) → S(T′) is

the left adjoint of g∗; it is more complicated to describe. g∗F is the sheaf associated

to the presheaf gpF given by

gpF(Y) = lim
−−→

Y→gX

F(X)

where Y is an object of T′ and the limit is taken over maps Y → gX, where a

morphism from one such map Y
f1
−→ gX1 to another map Y

f2
−→ gX2 is a map

h : X1 → X2 with g(h) ◦ f1 = f2.

1.1.2. Fundamental Lemmas.

Lemma 1.1.2. [31, Theorem I.3.7.6] Let g : T→ T′ be a morphism of topologies. Then

there exists a Leray spectral sequence Epq
2 = Hp(T,X,Rqg∗F) ⇒ Hp+q(T′, g(X),F) for any

X in Cat(T), canonical in the sheaf F.

Lemma 1.1.3. [31, Theorem I.3.9.2] Let g : T→ T′ be a morphism of topologies. Then

for any sheaf T on T′, Rng∗F is the sheaf on T associated to the presheaf X 7→ Hn(T′, g(X),F).

2Actually, for the lemmas below, it is enough that for any covering {Xi → X} and any morphism

Y → X we have g(Xi ×X Y) � g(Xi) ×g(X) g(Y), but we do not lose anything by simply assuming g

preserves all fibered products.
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We recall a definition from Milne’s notes on étale cohomology3 and prove some

basic lemmas we will later use.

Definition 1.1.4. A map F α
−→ F′ of presheaves is locally surjective if for every

section s ∈ F′(U) there is a covering {Ui → U}i∈I such that s|Ui is in the image of α for all

i ∈ I.

Lemma 1.1.5. A map α : F → F′ of sheaves is an epimorphism in the category of

sheaves if and only if it is locally surjective.

Proof. Suppose α is an epimorphism, and let s ∈ F′(U). Let P be the presheaf

cokerα : U 7→ F′(U)/ Im(F(U)). Then the sheaf cokerα is the sheafification P# of

P [31, p. 51], and P# = 0. Since the map P- → P# is injective [31, Proposition

I.3.1.3], this implies P- = 0. Thus, by the definition of P-(U) as a direct limit, the

section s̄ ∈ P(U) = F′(U)/ Im(F(U)) is locally equal to 0, that is, there is a covering

{Ui → U}i∈I such that s̄|Ui = 0 for all i ∈ I. But that means s|Ui ∈ Im(F(Ui)), so α is

locally surjective.

Conversely, suppose α is locally surjective. To show α is an epimorphism,

suppose we have a map β : F′ → G of sheaves, such that β◦α = 0; we need to show

β = 0, so let s ∈ F′(U). There exist a covering {Ui → U}i∈I and sections si ∈ F(Ui)

such that s|Ui = α(si) for all i ∈ I. Thus β(s)|Ui = β(s|Ui) = β(α(si)) = 0, and so, by the

sheaf axiom for G, β(s) = 0, as desired. �

The following lemma is a slight strengthening of [31, Proposition I.3.7.1].

Lemma 1.1.6. Suppose there is a morphism of topologies g : T→ T′ such that for every

object X of T and every cover {Yi → g(X)} in T′ there is a cover { f j : X j → X} in T such

that {g( f j) : g(X j)→ g(X)} refines {Yi → g(X)}. Then g∗ is exact, hence for any sheaf F on

T′ and any object X of T we have Hn(T,X, g∗F) � Hn(T′, g(X),F).

Proof. One can use an argument similar to that used in [1, Corollary 2.4.7],

explicated in [31, Lemma I.3.8.1], but to keep the text self-contained we provide a

3http://www.jmilne.org/math/CourseNotes/LEC.pdf

9



different argument based on Lemma 1.1.5: g∗ is always left exact, so we just have

to show that if α : F → F′ is an epimorphism of sheaves then g∗α : g∗F → g∗F′

is locally surjective. So let s ∈ g∗F′(X) = F′(g(X)). There is a cover {Yi → g(X)}i∈I

in T′ such that for each i, s|Yi = α(si) for some si ∈ F(Yi). By the hypothesis of

the lemma, there is a cover { f j : X j → X} j∈J such that {g( f j) : g(X j) → g(X)} j∈J

refines {Yi → g(X)}i∈I. This means there is a map φ : J → I such that g(X j) → g(X)

factors through Yφ( j) → g(X) for each j ∈ J. Therefore, s|g(X j) = (s|Yφ( j))|g(X j) =

α(sφ( j))|g(X j) = α(sφ( j)|g(X j)) ∈ F′(g(X j)) = g∗F′(X j), i.e. s|X j ∈ Im(g∗α) for all j ∈ J,

which says that g∗α is locally surjective, as desired.

Now consider the Leray spectral sequence

Epq
2 = Hp(T,X,Rqg∗F)⇒ Hp+q(T′, g(X),F).

Since g∗ is exact, Rqg∗F = 0 for q > 0, so the spectral sequence gives the isomorphism

stated in the conclusion of the lemma. �

Lemma 1.1.7. [31, p. 59] If {Ui → U}i∈I is a covering in a Grothendieck topology and F

is an abelian sheaf such that Hq(Ui0 ×U · · · ×U Uin ,F) = 0 for all q > 0, n ≥ 0, and all tuples

(i0, . . . , in) ∈ In+1 then there are canonical isomorphisms Hp({Ui → U},F) ∼−→ Hp(U,F) for

all p.

1.1.3. Comparison of Grothendieck Topologies. We introduce the terminol-

ogy in Vistoli’s Grothendieck topologies, fibered categories and descent theory [33] used to

compare two different topologies on the same category; this will be used in Chapter

2, particularly in Section 2.2. If there are two topologies T1,T2 on a category, we

say T2 is finer than T1, or T1 is coarser than T2, written T1 ≺ T2, if every covering in

T1 has a refinement in T2. T1 ≺ T2 if and only if every sheaf of sets for T2 is a sheaf

for T1 (see [33] and Vistoli’s post on Mathoverflow4).

If T1 ≺ T2 and T2 ≺ T1 then we say the two topologies are equivalent; this

implies they have the same sheaves and the same cohomology (by Lemma 1.1.6).

4http://mathoverflow.net/questions/128564/can-inequivalent-topologies-have-same-sheaves-

cohomology
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If T1 ≺ T2 but not T2 ≺ T1, we will write T1 � T2; this implies that there are strictly

more sheaves for T1 than for T2.

A topology T is called saturated if whenever a family U = {Ui → U} has a

refinement by a covering in T, U itself is a covering in T. Any topology T is

equivalent to its saturation: the topology whose coverings are those which have

a refinement in T. It is easy to check that the saturation of a topology is indeed a

topology.

1.2. Quasi-Abelian Categories

1.2.1. S-Categories. Two standard references for quasi-abelian categories are

Nobuo Yoneda’s paper [39], where he works in quasi-abelian categories and con-

structs higher Ext groups in terms of exact sequences, proving that a short exact

sequence gives a long exact sequence of Ext’s, and [28], which uses Grothendieck’s

definition of quasi-abelian categories and details the construction of derived cate-

gories using quasi-abelian categories. A very closely related paper on exact cate-

gories, where the axioms are essentially the same, is [5].

A morphism f : A→ B in an additive category is proper if the natural map from

coker(ker f )→ ker(coker f ) is an isomorphism and, in particular, these kernels and

cokernels exist. Note that, if all kernels and cokernels exist, then a morphism is

a proper monomorphism ⇐⇒ it is the kernel of some morphism ⇐⇒ it is the

kernel of its own cokernel. Dually, a morphism is a proper epimorphism ⇐⇒ it

is the cokernel of some morphism ⇐⇒ it is the cokernel of its own kernel.

An S-category is an additive category C together with a class S of morphisms

of C such that:

(S1) All isomorphisms are in S, and all maps in S are proper.5

5Actually, Yoneda has a small typo and writes PA ⊃ S∩EA , where A is our C, PA is the

class of proper morphisms in A , and EA is the class of “equivalence maps,” or isomorphisms in

modern language. He later says that the smallest possible S is the set of direct maps, i.e. proper

maps φ : A→ B such that there is a map ψ : B→ A with φψφ = φ, and the largest possible S is PA ,

so it is clear that he meant PA ⊃ S ⊃EA .
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(S2) For any two morphisms f : A → B, g : C → D in S, the morphism f ⊕ g :

A ⊕ C→ B ⊕D is in S.

(S3) If φ ∈ S then all kernels and cokernels of φ are in S.

(S4) Any f ∈ S can be written f = m ◦ e, where m, e ∈ S,ker m = 0, coker e = 0, and

any such composition m ◦ e is in S.

The class P(C) of all proper morphisms satisfies all these properties and so is the

largest possible class S for C.

In working with Grothendieck topologies as we do here, one wants a list of

axioms that ensures a class of epimorphisms gives an S-category; we present one

such list here. Some of these axioms become redundant if one includes the Axioms

(Q) and (Q*) (see Section 1.2.2 below) to ensure we have a quasi-abelian S-category.

Proposition 1.2.1. Given a class E of epimorphisms in C, there is a unique class S

such that (C,S) is an S-category and E is the subclass of epimorphisms in S, provided E

satisfies the following conditions:

(1) all identity maps are in E,

(2) all maps X→ 0 for X ∈ ObC are in E,

(3) all maps in E are proper,

(4) if e, e′ ∈ E then e ⊕ e′ ∈ E,

(5) for any e : A→ I in E and any isomorphism φ : I→ B, the composition φ ◦ e is in E.

Proof. To construct S, simply let M be the class of all kernels of maps in E

(two different kernels of the same map are not identified, even though they are

uniquely isomorphic) and define S as M ◦ E, the class of compositions m ◦ e such

that m ∈ M, e ∈ E. For any X ∈ ObC, we have idX � ker(X → 0) ∈ M, so E ⊆ S,

and M ⊆ S by (1). Any isomorphism φ : A ∼

−→ B is a kernel of B → 0, so φ ∈ M

and isomorphisms are in S. All maps in M are proper, since they are kernels of

their own cokernels by (3), so to see that S satisfies (S1) we just have to show that

any composition A e
−→ I m
−→ B with m a kernel and e a cokernel is proper. Indeed,

ker(m ◦ e) = ker(e), and since e is a cokernel, e is the cokernel of its own kernel, so
12



coker(ker(m ◦ e)) � e. Dually, coker(m ◦ e) = coker(m) and ker(coker(m ◦ e)) � m, so

m ◦ e is proper.

To show that S satisfies (S2), suppose we have two compositions A e
−→ I m
−→ B and

A′ e′
−→ I′ m′

−→ B′with m,m′ ∈M, e, e′ ∈ E. Then e⊕e′ ∈ E, and if m = ker( f ),m′ = ker( f ′)

for some f , f ′ ∈ E, then f ⊕ f ′ ∈ E so m⊕m′ = ker( f ⊕ f ′) ∈M (⊕ is exact), hence the

map (m ◦ e) ⊕ (m′ ◦ e′), which can be decomposed as A ⊕ A′ e⊕e′
−−→ I ⊕ I′ m⊕m′

−−−→ B ⊕ B′,

is in S. Next, keeping the same notation, ker(m ◦ e) = ker(e) ∈ M, so ker(m ◦ e) =

ker(e)◦ idA ∈ S, and coker(m◦ e) = coker(m) � f ∈ E so coker(m◦ e) ∈ S by (5), hence

S satisfies (S3). Now if m ◦ e is epic then coker(m ◦ e) = coker(m) = 0, so m is an

isomorphism and m ◦ e ∈ E by (5), so E is the class of epimorphisms in S. Similarly,

if m ◦ e is monic, then e is an isomorphism, so A e
−→ I m
−→ B is a kernel of f , hence

m ◦ e ∈M, which shows that M is the class of monomorphisms in S. Finally, S was

defined to be M ◦ E, so it satisfies (S4).

The uniqueness of S can be verified by first noting that the kernels of e ∈ E

must be in S and all compositions m ◦ e with m ∈ M, e ∈ E must be in S, so any

other class S′ with E ⊆ S′ must satisfy S ⊆ S′. Now if g : A → B is a map in S′

then g must factor as A e
−→ I m
−→ B with e epic and m monic, e,m ∈ S′, and if all the

epimorphisms in S′ are to be in E, we must have e ∈ E and coker(m) ∈ E, hence

m ∈M and g = m ◦ e ∈ S. �

Definition 1.2.2 (Yoneda). A sequence A a
−→ B b

−→ C is exact if the maps a and b are

proper, b ◦ a = 0, and the natural map Im(a)→ ker(b) is an isomorphism.

Corollary 1.2.3. Given a class K of short exact sequences 0 → A → B τ
−→ C → 0

such that the class E of epimorphisms τ satisfies the conditions of Proposition 1.2.1, there

is a unique class S such that (C,S) is an S-category and the class of short exact sequences

in S is K.6

6Technically, we should require that if A � A′ and 0 → A → B τ
−→ C → 0 is in K, then

0→ A′ → B τ
−→ C→ 0 is also in K.
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Proof. Construct the class S from E as in the proof of the proposition. An exact

sequence 0→ A α
−→ B

β
−→ C→ 0 is in S ⇐⇒ α, β ∈ S ⇐⇒ β ∈ S since all kernels of

β ∈ E are in S. Thus K is exactly the class of short exact sequences in S. Conversely,

if S′ is another class making (C,S) an S-category such that K is the class of short

exact sequences in S′, then the class of epimorphisms B τ
−→ C in S′ is precisely E

(since any epimorphism in S′ must be the cokernel of its own kernel, hence gives a

short exact sequence) so, by the uniqueness of S in Proposition 1.2.1, we must have

S = S′. �

Lemma 1.2.4. In the short exact sequence 0→ B
β
−→ E α

−→ A→ 0, α has a section, i.e. a

morphism s : A→ E with αs = idA ⇐⇒ there is a morphism t : E→ B with βt = idB.

Proof. α(idE −sα) = 0 implies that there is a unique morphism t : E → B with

βt = idE −sα. Then βtβ = β − sαβ = β ⇒ tβ = idB. Dually, if t exists, then so does

s. �

1.2.2. Quasi-Abelian S-Categories.

Definition 1.2.5. An S-category is quasi-abelian if it satisfies the following four

conditions. An additive category C is quasi-abelian if (C,P(C)) satisfies (Q2) and (Q2*)

below (Yoneda [39, p. 522] proves that a quasi-abelian category C automatically satisfies

(Q0) and (Q0*) below).

(Q0) A composition of epimorphisms in S is an epimorphism in S.

(Q0*) A composition of monomorphisms in S is a monomorphism in S.

(Q2) Any exact sequence 0→ B→ E→ A→ 0 in S and any map A′ → A can be

embedded in a commutative diagram

0 → B → E′ → A′ → 0

|| ↓ ↓

0 → B → E → A → 0

with both rows exact and in S.
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(Q2*) Any exact sequence 0→ B→ E→ A→ 0 in S and any map B→ B′ can be

embedded in a commutative diagram

0 → B → E → A → 0

↓ ↓ ||

0 → B′ → E′ → A → 0

with both rows exact and in S.

Yoneda proves that these four axioms together are equivalent to the following

two:

(Q) Any exact sequence 0 → B → E → A → 0 in S and any monomorphism

A′ → A in S can be embedded in a commutative diagram

0 → B → E′ → A′ → 0

|| ↓ ↓

0 → B → E → A → 0

with both rows exact and all maps in S (note the map E′ → E is a priori a

monomorphism).

(Q*) Any exact sequence 0 → B → E → A → 0 in S and any epimorphism

B→ B′ can be embedded in a commutative diagram

0 → B → E → A → 0

↓ ↓ ||

0 → B′ → E′ → A → 0

with both rows exact and all maps in S.

Wigner [35] defines a quasi-abelian S-category using a class of short exact se-

quences

(1) 0→ A i
−→ B d

−→ C→ 0

instead of a class of morphisms. It can easily be seen that (Q) is equivalent to

Wigner’s (Q) [35], which says that any exact sequence 0 → B → E → A → 0 in S
15



and any monomorphism A′ → A in S can be embedded in a commutative diagram

0 0

↓ ↓

0 → B → E′ → A′ → 0

|| ↓ ↓

0 → B → E → A → 0

↓ ↓

C = C

↓ ↓

0 0

with both rows and columns exact and all maps in S [35]. Of course, dually, (Q*) is

equivalent to Wigner’s (Q*), which is the dual of his (Q).

Technically, if one is to use short exact sequences, one needs some further

assumptions such as those in Proposition 1.2.1, those made by Quillen [27], or the

shorter list made by Keller [14, Appendix A]:

Theorem 1.2.6 (Keller). Let K be a class of short exact sequences (1) as defined by

Yoneda in the additive category C, E the class of epimorphisms β in K, and M the class

of monomorphisms α in K. If the following assumptions hold, then K gives rise to a

quasi-abelian S-category:

(K0) K is closed under isomorphism,

(K1) id0 ∈ E,

(K2) E is closed under composition,

(K3) E is closed under pullback by any morphism,

(K3*) M is closed under pushout by any morphism.

Proof. We show that the class E of epimorphisms satisfies properties (1)-(5) of

Proposition 1.2.1. (1) For any object A in C, the pullback of id0 by A → 0 is idA.

(2) For any object A in C, idA ∈ E ⇒ (0 → A) ∈ M. Take the pushout of 0 → A by

0→ A to get A→ A⊕A in M, so the short exact sequence 0→ A→ A⊕A→ A→ 0
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is in K. Taking the pullback of A ⊕ A → A by 0 → A, we see the map A → 0 is

in E. (3) By definition of Yoneda’s exact sequences, all maps in E are proper. (4)

Given epimorphisms e : B → C, e′ : B′ → C′ in E, pull back e by the projection

C ⊕ B′ → C to get e ⊕ id : B ⊕ B′ → C ⊕ B′ in E; similarly, id⊕e′ : C ⊕ B′ → C ⊕ C′

is in E, hence so is e ⊕ e′ = (e ⊕ id) ◦ (id⊕e′). (5) For any e : B → C in E and any

isomorphism φ : C→ C′, the short exact sequence containing e is isomorphic to the

one containing φ ◦ e. Proposition 1.2.1 then says we have an S-category. Keller[14]

proves these axioms imply (K2*): M is closed under composition, so the axioms

(Q0), (Q0*), (Q2), (Q2*) are all satisfied and (C,S) is a quasi-abelian S-category. �

Theorem 1.2.7. (Q2) and (Q2*) are equivalent, respectively, to Grothendieck’s axioms

(QA) and (QA*):

(QA) The pullback of an epimorphism in S by any map exists and is (an epimorphism)

in S.

(QA*) The pushout of a monomorphism in S by any map exists and is (a monomorphism)

in S.

Proof. We show (QA) ⇐⇒ (Q2); the proof that (QA*) ⇐⇒ (Q2*) is dual;

first suppose (QA) holds. Given the exact sequence 0 → B a′
−→ E

f ′
−→ A → 0 and

the monomorphism A → A′ in S, let E′ = E ×A A′. By the universal property

of the fibered product, there is a unique map B → E′ such that the composition

B → E′ → A′ is zero and the left square in the diagram for (Q2) is commutative.

Now the projection E′ → A′ is (by (QA)) an epimorphism in S, so it is proper, which

means it is the cokernel of its own kernel, so we just have to show B → E′ is the

kernel of E′ → A′, which is elementary and is left as an exercise.

Conversely, suppose (Q2) holds. The following argument is due to Theo Bühler7.

Let E e
−→ A be an epimorphism in S and f : A′ → A be any map. Let (B→ E) be the

kernel of e. It is well-known that f factors as A′
f ′
−→ A ⊕ A′

π1
−→ A, where f ′ is given

by f ′(a) = ( f (a), a) (translated into the language of additive categories) and π1 is

7Private communication.
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the projection onto the first coordinate. If we take the direct sum of the sequences

0 → B → E → A → 0 and 0 → 0 → A′ id
−→ A′ → 0, and then apply (Q2) to the

resulting sequence we get the following commutative diagram:

0 → B → E′ e′
−→ A′ → 0

|| ↓
g

↓
f ′

0 → B → E ⊕ A′
e⊕idA′
−−−−→ A ⊕ A′ → 0

|| ↓
π1 ↓

π1

0 → B → E e
−→ A → 0

The morphism E⊕A′ → A⊕A′ is the direct sum of e and idA′ , so it is in S. By (Q2),

the map E′ → A′ is in S. Now it is easy to see that the bottom-right square and the

top-right square are pullback squares, so E′ � E ×A A′ and the pullback of e by f is

an epimorphism in S, as desired. �

1.2.3. Yoneda Pullback.

Definition 1.2.8. Let (C′,S′) be an S-category,C an additive category, and f : C → C′

an additive functor. We define Yoneda’s pullback class f #S′ on C as the set of proper

maps φ : A→ B such that f takes the exact sequences 0→ kerφ→ A→ Imφ→ 0 and

0→ Imφ→ B→ cokerφ→ 0 to exact sequences.

The class f #S′ is the largest class S on C under which (C,S) is an S-category

such that for all φ ∈ S we have f (φ) ∈ S′. Note that if (C,Si) is an S-category for

all i in some index set I then (C,
⋂

Si) is an S-category, so in particular if (C,S) is

an S-category then so is (C,S ∩ f #S′). Yoneda proved the following theorem [39, p.

531]:

Theorem 1.2.9. If f : C → C′ is half-exact (also known as exact in the middle), i.e.

takes an exact sequence 0→ A→ B→ C→ 0 to an exact sequence f A→ f B→ f C, and

(C′,S′), (C,S) are quasi-abelian S-categories then (C,S∩ f #S′) is a quasi-abelian S-category.

In particular, if C is a quasi-abelian category, (C′,S′) is a quasi-abelian S-category, and f

is half-exact, then (C, f #S′) is a quasi-abelian S-category.
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In [35], Wigner talks about a class S in which the short exact sequences 0 →

A → B τ
−→ C → 0 satisfy the property that τ has a continuous (not necessarily

G-equivariant) section σ : U → B with τ ◦ σ = idC. This class is also used in

[12]. The class E of all such proper epimorphisms τ satisfies the five conditions of

Proposition 1.2.1, so there is indeed a unique class S in which E is the subclass of

epimorphisms and KE is the class of short exact sequences in S. Another explicit

description of this class S when C is the categoryMG of topological G-modules is

y#S′, where S′ = Mor(S(Tc
G)) (see Section 2.3) is the class of all morphisms in the

category of sheaves on the global-section topology Tc
G defined in Section 2.1.2 and

y : MG → S(Tc
G) : A 7→ Ã is the Yoneda embedding. This shows that (MG,S) is a

quasi-abelian S-category by Theorem 1.2.9.

The class of short exact sequences 0 → A → B τ
−→ C → 0 of Polish topolog-

ical G-modules where τ has a local section around 0 ∈ C is used extensively in

Khedekar and Rajan’s locally continuous cochain theory [15]. More precisely, the

corresponding epimorphisms τ : B → C satisfy the following condition: there is a

neighborhood U of 0 ∈ C and a continuous map σ : C → B such that τ ◦ σ = idU.

It is easy to check that this class of epimorphisms E satisfies the conditions of

Proposition 1.2.1, hence gives a class S which makes (MG,S) an S-category. But

another description of this class is that the epimorphisms τ : B → C in S have

local sections everywhere, that is, for all x ∈ C there is a neighborhood U of x in

C and a continuous map σ : U → B with τ ◦ σ = idU. This is because if we have

a local section σ on a neighborhood U of 0 ∈ C, then we can translate it to a local

section σx on U + x defined by σx(y) = σ(y − x) + b for some b with τ(b) = x, so that

τ(σx(y)) = τ(σ(y − x) + b) = y − x + x = y. Therefore, yet another description of this

class is S = y#(Mor(S(TL
G))) (see Section 2.3), the Yoneda pullback of the class of

all morphisms of sheaves on Lichtenbaum’s topology TL
G defined in Section 2.2.6,

which shows that (MG,S) is a quasi-abelian S-category.
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1.2.4. Definition of Extn(A,B). Let (C,S) be a quasi-abelian S-category. Yoneda

defines Extn
C,S(A,B) for A,B in C to be the set8 EXTn(A,B) of exact sequences (called

extensions)

X : 0→ B α
−→ En → · · · → E1

ω
−→ A→ 0

where all the maps are in S, modulo the equivalence relation generated by maps

X→ X′ of such extensions: commutative diagrams

X : 0 → B α
−→ En → · · · → E1

ω
−→ A → 0

|| ↓ ↓ ||

X′ : 0 → B α′
−→ E′n → · · · → E′1

ω′
−→ A → 0

(the maps Ei → E′i do not need to be in S). Thus two extensions X and X′ are

equivalent if and only if there is a string of such maps of extensions X → X1 ←

X2 → · · · ← XN → X′. Let us denote by [X] the class of the extension X under this

equivalence relation.

To describe the addition law for two classes of extensions [39, p. 537, (3.3.1)],

we first need some definitions. The cotranslation of an extension X as above by

α : A′ → A is the extension

X© α : 0→ B→ En → · · · → E2 → E′1 → A′ → 0

where E′1 = E1 ×A A′ and the map E2 → E′1 is the unique map which makes the

composition with E′1 → A′ equal to zero and the composition with E′1 → E1 equal

to the map E2 → E1. It turns out that, indeed, the sequence X© α is exact, and the

class of X©α only depends on the class of X. Note that all maps in X◦α are in S by

(QA) and an argument by Yoneda. Therefore, we can define [X] ◦ α to be [X© α].

Dually, we define the translation of X by β : B→ B′ to be the extension

β© X : 0→ B′ → E′n → En−1 → · · · → E1 → A→ 0

8Yoneda avoids all “metamathematical arguments” and basically thinks of categories as small

so that he only needs to work with sets.
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where E′n = B′ tB En, and we define β ◦ [X] to be [β © X]. Now the addition

law states that, for X and X′ as above, we have [X] + [X′] = ∇B ◦ [X ⊕ X′] ◦ ∆A,

where ∆A : A → A ⊕ A is the diagonal map and ∇B : B ⊕ B → B is the codiagonal

map. The zero element is given by 0 → B → A ⊕ B → A → 0 for n = 1 and

by 0 → B id
−→ B 0

−→ 0 → · · · → 0 → A id
−→ A → 0 for n > 1. The negative of

an element [X] is given by switching the sign of an odd number of maps among

B→ En,En → En−1, . . . ,E1 → A.

1.2.5. A Theorem on Embeddings.

Lemma 1.2.10 (Short Five Lemma). If we have a commutative diagram

0 → A → B → C → 0

|| ↓
φ

||

0 → A → B′ → C → 0

of proper morphisms in a quasi-abelian category C, then φ is an isomorphism.

Proof. This is [5, Corollary 3.2]. �

Theorem 1.2.11. Suppose (C,S) and (D,S′) are quasi-abelian S-categories and α :

C → D is a fully faithful exact additive functor, i.e. α carries an exact sequence in S into

an exact sequence in S′. Then for all n ≥ 0 there are natural maps φn : Extn
C,S(A,B) →

Extn
D,S′(α(A), α(B)) taking the class of an extension

X : 0→ B→ En → · · · → E1 → A→ 0

to the class of the extension

αX : 0→ α(B)→ α(En)→ · · · → α(E1)→ α(A)→ 0.

φn is an isomorphism for n = 0 and an injection for n = 1.

Now suppose that in addition φn is a surjection for n = 1 and either the following or

its dual holds:

(E) For every monomorphism m : α(B)→ E in S′ there is a monomorphism m′ : B→

E′ in S and a map f : E→ α(E′) inD such that f ◦m = α(m′).
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Then φn is an isomorphism for all n.

Proof. First we need to show that the mapφn is well-defined. Suppose we have

an extension X′ equivalent to X in (C,S). Then there is a string of commutative

diagrams connecting X to X′, and if we apply α to the commutative diagrams, we

get commutative diagrams in D (because α is a functor), so α(X) is equivalent to

α(X′). Since α is exact and preserves direct sums (because α is additive), it is easy to

see that α commutes with translation and cotranslation, so φn is a homomorphism

of abelian groups.

Of course, the statement that φ0 is an isomorphism of abelian groups is equiv-

alent to the statement that α is fully faithful and additive. To show φ1 is injective,

suppose we have two extensions

X : 0→ B→ E→ A→ 0

X′ : 0→ B→ E′ → A→ 0

in (C,S) and α(X) is equivalent to α(X′). Then there is a string of commutative

diagrams in D connecting them. But by Lemma 1.2.10, any such commutative

diagram induces an isomorphism on the middle terms. Thus, by composing the

isomorphisms on the middle terms and using the commutativity in the commu-

tative diagrams connecting α(X) and α(X′), we get an isomorphism α(E) ∼−→ α(E′)

making the diagram α(X) → α(X′) commutative. The fact that α is fully faithful

then gives us a map X→ X′, so the two are equivalent.

Now we assume that φ1 is surjective and (E) holds (if the dual of (E) holds, we

can use the dual of the following proof). We first show surjectivity of φn for n > 1;

this argument is due to Theo Bühler9. Let

X : 0→ α(B)
e0
−→ E1

e1
−→ E2 → · · · → En

en
−→ α(A)→ 0

be an extension in (D,S′). Let Ik be the image of ek, so ek decomposes as Ek
qk
−→ Ik

ik
−→

Ek+1 for k = 1, · · · ,n − 1. We construct the diagram below as follows. By (E) we

9Private communication.
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obtain the maps e′0 : B→ E′1 and s1 : E1 → α(E′1), then take the cokernel q′1 : E′1 → I′1
and note that there is an induced map t1 : I1 → α(I′1) such that t1◦q1 = α(q′1)◦s1, since

q1 is the cokernel of e0 and α(q′1) ◦ s1 ◦ e0 = 0. Next, we take the fibered coproduct

F2 = α(I′1) tI1 E2 in D. Note that, by axiom (Q2*), the map f1 is a monomorphism

in S′, g2 is an epimorphism in S′, and we have commutativity so far, i.e. q2 is the

composition E2 → F2
g2
−→ I1. Now we use (E) again to obtain the maps i′1 and q′2,

take the fibered coproduct F3 = α(I′2) tI2 E3, and keep going in a similar fashion.

α(B)
e0
−→ E1

q1
−→ I1

i1
−→ E2

q2
−→ I2

i2
−→ E3 · · ·

|| ↓ ↓ ↓ || ||

α(B)
α(e′0)
−−−→ α(E′1)

α(q′1)
−−−→ α(I′1)

f1
−→ F2

g2
−→ I2

i2
−→ E3 · · ·

|| ↓ ↓ ↓

α(I′1)
α(i′1)
−−−→ α(E′1)

α(q′2)
−−−→ α(I′2)

f2
−→ F3 · · ·

At the end, when we take the fibered coproduct Fn = α(I′n−1) tIn−1 En, we get an

exact sequence 0 → α(I′n−1) → Fn → α(A) → 0 in S′, and by the surjectivity of φ1

and the Short Five Lemma we see that Fn � α(E′n) for some E′n ∈ C. Thus there is a

commutative diagram linking X to α(X′), with

X′ : 0→ B
e′0
−→ E′1

i′1◦q
′

1
−−−→ E′2 → · · · → E′n → A→ 0

and surjectivity of φn is proven.

Yoneda’s Similarity Theorem II [39, p. 575] states that if we have a sequence

X : 0→ B→ E1 → · · · → En → A→ 0

then [X] = 0 if and only if there is an exact sequence X′ and a commutative diagram

X : 0 → B → E1 → · · · → En−1 → En → A → 0

|| ↓ ↓ ||

X′ : 0 → B → E′1 → · · · → E′n−1 → En → 0
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To prove injectivity, we use the proof of surjectivity and both implications of this

Similarity Theorem II: if [α(X)] = 0 then we get a commutative diagram

α(X) : α(B) → α(E1) → · · · → α(En−1) → α(En) → α(A)

|| ↓ ↓ ||

X′ : α(B) → E′1 → · · · → E′n−1 → α(En) → 0

|| ↓ ↓ ||

α(X′′) : α(B) → α(E′′1 ) → · · · → α(E′′n−1) → α(En) → 0

and the map α(X) → α(X′′) comes from a map X → X′′ since α is fully faithful,

hence [X] = 0. �

1.2.6. Universality of Extn
C,S(A,B). Let (C,S) be a quasi-abelian S-category. Sup-

pose (hi)∞i=0 is a sequence of covariant functors from C to Ab that form an exact

connected sequence of functors with respect to the class S, i.e. such that for every

short exact sequence 0 → A α
−→ B

β
−→ C → 0 with α, β ∈ S we get a long exact

sequence

· · · → hi(A)→ hi(B)→ hi(C)→ hi+1(A)→ · · ·

which is functorial in the short exact sequence (the morphisms connecting the short

exact sequences do not need to be in S). The notion of an exact connected sequence

of functors with respect to S only differs from the notion of a cohomological functor

[10] in that only short exact sequences in S need to give a long exact sequence. An

exact connected sequence (hi) of functors as above is universal if for any other

such exact connected sequence of functors (h̃i) and any natural transformation

η0 : h0
→ h̃0 there exist unique natural transformations ηi : hi

→ h̃i such that for any

short exact sequence in S as above, the diagram

(2)

hi(C) → hi+1(A)

↓
ηi ↓

ηi+1

h̃i(C) → h̃i+1(A)

commutes.
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Theorem 1.2.12 (D. Wigner). Let (C,S) be a quasi-abelian S-category and Z an object

in C. Then (Exti
C,S(Z,−))∞i=0 forms a universal exact connected sequence of functors.

Proof. The proof is given in [36, pp. 11-14] for S = the class of proper morphisms

inMG, but it works in this generality. �

Theorem 1.2.13 (D. Wigner). Let (C,S) be a quasi-abelian S-category, and suppose

(Hi) and (hi) are two exact connected sequences of functors, with (Hi) universal, such that

H0 � h0 and

(C) for i > 0 and x ∈ hi(A) there is a proper monomorphism θ : A → B such that

θ∗(x) = 0 ∈ hi(B).

Then the maps Hi
→ hi given by universality are isomorphisms.

Proof. The proof is given in [36, pp. 14-15]. �

1.3. Topological Groups and Associated Categories

1.3.1. Topological Groups. Throughout this section, G will be a topological

group. Unless explicitly mentioned otherwise, topological groups, and more gen-

erally topological spaces, do not have to satisfy T1, i.e. the one-point sets do not

have to be closed. We recall a couple of facts about topological groups from [26].

First, for a group G with a topology to be a topological group, that is, for the

maps G × G → G : (g, h) 7→ gh and G → G : g 7→ g−1 to be continuous, it is

necessary and sufficient that for any a, b ∈ G and any neighborhood U of ab−1 there

exist a neighborhood Ua of a and a neighborhood Ub of b such that UaU−1
b ⊆ U

(U−1 = {x−1
| x ∈ U}). In fact, by induction, given any neighborhood U of an

element of the form xn1
1 xn2

2 · · · x
nk
k , we can find neighborhoods U1 of x1, . . . ,Uk of xk

such that Un1
1 Un2

2 · · ·U
nk
k ⊆ U (the powers ni are allowed to be negative). We will use

this fact often throughout.

Second, any topological group is a regular space, i.e. for any g ∈ G and any

neighborhood U of g, there exists a neighborhood V of g such that V ⊆ U. Left

and right multiplication by any g ∈ G are homeomorphisms of G, so it is enough
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to show this for g = e. By the previous paragraph, there exists a neighborhood V

of e such that VV−1
⊆ U. Now if a ∈ V̄ then any neighborhood of a, in particular

aV, intersects V, i.e. there exist b, c ∈ V such that ab = c, so a = cb−1
∈ VV−1

⊆ U.

It is easy to show this condition for regularity is equivalent to the usual one, that

any point x and a closed set F not containing x can be separated by disjoint open

sets. Thus topological groups provide a source of examples of regular spaces

that are not necessarily T1. Of course, a T0 regular space is T3, which implies T2

(Hausdorff), which implies T1. Recall T0, or Kolmogorov, means any two points

are topologically distinguishable, that is, for any x , y, there is an open set U

containing one of x, y, but not both.

Note that for any subgroup H of G, the quotient map q : G→ G/H is open if we

give G/H the quotient topology, because for any open set U ⊆ G, q−1(q(U)) = UH =⋃
h∈H Uh is the union of open sets, hence q−1(q(U)) is open, hence q(U) is open. We

will often use this fact.

1.3.2. The Category CG of G-Spaces. Let G be a topological group. We will be

working a great deal with the category CG of G-spaces, so we collect a few facts

about them here. The objects are G-sets X with a topology such that the map

G × X → X : (g, x) 7→ g · x is continuous. The morphisms are continuous G-maps.

The initial object is ∅, and the final object is pt.

1. Arbitrary products exist. Indeed, let (Xi)i∈I be a collection of G-spaces. Then∏
Xi, with the product topology and diagonal G-action, is the categorical product in

CG. To verify that the action of G is continuous, i.e. that the map p : G×
∏

Xi →
∏

Xi

is continuous, first let U be a subset of
∏

Xi which is in the basis for the topology

of
∏

Xi. In other words, without loss of generality we can take Ui to be an open

subset of Xi for i = i1, . . . , in and set U = U1 × · · · × Un ×
∏

i<{i1,...in}Xi. We want to

show p−1(U) is an open subset of G×
∏

Xi. Let mi : G×Xi → Xi : (g, x) 7→ g ·x. Then

p−1(U) = {(g ∈ G, (xi ∈ Xi)) | g · xi ∈ Ui∀i = i1, . . . , in}
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=

n⋂
i=1

{(g ∈ G, (xi ∈ Xi)) | g · xi ∈ Ui}

=

n⋂
i=1

m−1
i (Ui) ×

∏
j,i

X j

is a finite intersection of open sets, hence is open. Since we know
∏

Xi satisfies the

universal property in both the category of G-sets and the category of topological

spaces, it satisfies the universal property in CG. The same argument works for all

such verifications, so we will skip it.

2. Arbitrary coproducts exist: take (Xi)i∈I as above. Then
∐

Xi, with the disjoint

union topology (a set U ⊆
∐

Xi is open if and only if U ∩ Xi is open for all

Xi), is the categorical coproduct in CG. To verify that the map p : G ×
∐

Xi →∐
Xi is continuous, take an open set U ⊆

∐
Xi and let mi be as above. Then

p−1(U) ∩ (G × Xi) = m−1
i (U) is open, hence p−1(U) is open.

3. A G-subset (i.e. a subset that is closed under the action of G) X of a G-

space Y, with the subspace topology, has continuous G-action: let p : G × Y → Y

and q : G × X → X be the two actions, and let U be an open subset of X. Then

q−1(U) = {(g, x) | g · x ∈ U} = p−1(U) because if y ∈ Y and g · y = u ∈ U then

y = g−1
· u ∈ X since X is a G-subset, so q−1(U) is open in G × X.

4. Equalizers exist: given maps f , g : X → Y, we have X ×Y X = {(x, x′) | f (x) =

g(x′)}, with the subspace topology of X × X and diagonal action; since products of

G-spaces are G-spaces and G-subsets of G-spaces are G-spaces, X×Y X is a G-space.

This implies arbitrary small inverse limits, in particular fibered products, exist in

CG.

Proposition 1.3.1. Suppose ∼ is an equivalence relation on the G-space Y such that

x ∼ y⇒ g · x ∼ g · y for all g ∈ G. Let X = Y/ ∼ with the quotient topology and G-action

given by g · [x] = [g · x], where [x] is the equivalence class represented by x. If the quotient

map Y→ X is open, then X is a G-space.

Proof. Since id : G→ G and q : Y→ X are surjective open quotient maps, their

product id×q is a surjective open quotient map. Now (see the diagram below)
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given an open subset U of X, the preimage V = p−1(U) under the map G × X
p
−→ X

is open because the preimage W of V under the map id×q is precisely m−1(q−1(U))

(where m : G × Y→ Y is the action of G on Y), which is open.

G × Y Y

G × X X

W ⊂

V ⊂ ⊃ U

id× q
�� p

//

m
//

q
��

�

For example, this implies immediately that for any subgroup H of G, G/H (with

the quotient topology from G) is a continuous G-space, since the quotient map

q : G→ G/H is open by the argument in Section 1.3.1.

5. Coequalizers do not always exist, but given open maps f , g : X ⇒ Y in CG,

the coequalizer Y
q
−→ Z is given by Z = Y/ ∼, where ∼ is the equivalence relation

generated by identifying f (x) ∼ g(x) for all x ∈ X, and q is the quotient map. The set

Y/ ∼ has the G-action g · [y] = [g · y]. This is well-defined: if y = f (x) and y′ = g(x)

then for any g0 ∈ G we have

g0 · y = g0 · f (x) = f (g0 · x) ∼ g(g0 · x) = g0 · g(x) = g0 · y′.

In general, if y ∼ y′ then there is a finite string of equivalences connecting them,

and by induction g0 · y ∼ g0 · y′. As a space, Z has the quotient topology. It is

well-known that this space has the universal property as a topological space, and

it is easy to check that it satisfies the universal property in the category of G-sets.

To see that the quotient map q : Y→ Z is open, note that, for any y ∈ Y,

{y′ ∈ Y | y′ ∼ y} = f (g−1(y)) ∪ g( f −1(y)) ∪ f (g−1( f (g−1(y)))) ∪ f (g−1(g( f −1(y)))) ∪ · · ·

so for an open set U ⊆ Y, q−1(q(U)) = {y ∈ Y | ∃u ∈ U, y ∼ u} is the union of

f (g−1(U)), g( f −1(U)), etc., each of which is open. Proposition 1.3.1 shows that Z has

continuous G-action.

7. There is an inclusion functor from topological spaces to G-spaces taking a

topological space X to the G-space X with trivial G-action (the map G × X → X is
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continuous since the preimage of an open set U is G ×U). Clearly, the G-set X × G

with G-action g(x, g′) = (x, gg′) has continuous G-action; such G-spaces will be used

in Chapter 2.

To become more familiar with G-spaces, let us first explore what topologies are

possible for G-spaces which consist of a single orbit.

Proposition 1.3.2. Let X be a G-space and O � G/H the orbit of x ∈ X in X

(H = Stab(x)). Then the subspace topology on O must be no finer than the quotient

topology.

Proof. The map f : G → X : g 7→ g · x is continuous, so if U is an open set of

O which is the intersection of an open set V of X with O, then f −1(V) = f −1(U) is

open, which means U is open in the quotient topology. �

Proposition 1.3.3. Let G be a topological group, let H be a subgroup of G, and let

O = G/H as a G-set. Let G′ be a topological group whose underlying group is G and whose

topology is coarser than that of G. Then the topology induced on O by the quotient map

q : G′ → O makes O into a G-space.

Proof. We must show that the map G × O a
−→ O is continuous. Let U ⊆ O be an

open subset, and let Ū := q−1(U) ⊆ G′. Let (g1, g2H) ∈ a−1(U). Then the preimage

of Ū under G′ × G′ → G′ contains (g1, g2) and is open, so there are open subsets

U1,U2 ⊆ G′ such that g1 ∈ U1, g2 ∈ U2,U1U2 ⊆ Ū. Since q is an open map, q(U2) is

an open subset of O, and since the topology of G′ is coarser than that of G, U1 is

open in G, hence U1 × q(U2) is a neighborhood of (g1, g2H) in a−1(U). This means

a−1(U) can be covered by open subsets, hence is open. �

Next, let us explore what is necessary for a discrete G-set to have a continuous

G-action.

Proposition 1.3.4. For any topological group G and G-set X with discrete topology,

the map G × X
f
−→ X : (g, x) 7→ g · x is continuous if and only if the stabilizer Stab(x) =

{g ∈ G | g · x = x} of x ∈ X is open for all x ∈ X.
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Proof. In one direction, for any x ∈ X, the map G→ X : g 7→ g · x is continuous,

hence the preimage Stab(x) of x is open. Conversely, suppose all the stabilizers

are open. To show f is continuous, it is enough to show that the preimage f −1(x)

of a single point x ∈ X is open. Now f −1(x) =
⋃

y∈X{g ∈ G | gy = x}, so it is

enough to show each set H = {g ∈ G | gy = x} is open. If it is empty, we are done.

Otherwise, suppose h ∈ H. Then H = Stab(x)h: given g ∈ H, we have g = (gh−1)h

with gh−1
∈ Stab(x), and conversely given g ∈ Stab(x), ghy = gx = x. Since Stab(x)

is open, so is H = Stab(x)h (multiplication by h is a homeomorphism on G). �

Finally, if G is given the two special topologies possible for any topological

group, the discrete one and the trivial one, we explore what topologies make a

G-set into a G-space.

Proposition 1.3.5. Let G be a discrete group and X a G-set which is also a topological

space. The action of G is continuous if and only if g ·U is open for all open sets U ⊆ X and

g ∈ G.

Proof. If the action of G is continuous then multiplication by g is a home-

omorphism, so g · U is open for all open sets U ⊆ X and g ∈ G. For the

converse, the preimage of an open set U ⊆ X under the action G × X → X is

{(g, x) | g · x ∈ U} =
⋃

g∈G{g} × g−1U is the union of open sets, hence open. �

Proposition 1.3.6. Let G be a group with trivial topology and X a G-set which is also

a topological space. The action of G is continuous if and only if each open set of X is a union

of orbits.

Proof. If the action G×X a
−→ X is continuous, then by Lemma 1.3.2, the subspace

topology for any orbit must be the trivial topology, which means for any open set

U of X and any orbit O, either U ∩ O = ∅ or U ∩ O = O. Conversely, if each open

set U of X is a union of orbits, then a−1(U) = G ×U is open. �

Proposition 1.3.7. There is a left-adjoint Q and a right-adjoint S to the forgetful

functor R from CG to G-set .
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Proof. For a G-set X, define a space Q(X) = X with the finest topology T

making X a G-space (see Lemma 1.3.12). Explicitly, give each orbit O � G/H of X

the quotient topology and define a set U ⊆ X to be open if and only if its intersection

with each orbitO is open. Clearly, a G-space topology on X cannot be finer because

the orbits cannot have any more open sets as subspaces by Proposition 1.3.2, and

this makes X the disjoint union of the orbits, each of which has the finest topology

possible. For a G-map f : X → Y of G-sets, define Q( f ) = f : Q(X) → Q(Y).

Then Q( f ) is continuous because Q(Y) is a G-space, so the weak topology on X

with respect to f (see Lemma 1.3.13) is a G-space topology, hence coarser than the

topology of Q(X). For the same reason, there is a natural continuous map QRX id
−→ X

for any G-space X. Now RQ = id, so Q → QRQ → Q and R → RQR → R are

isomorphisms, hence the functors are adjoint (of course, one can also directly show

that HomCG(QX,Y) = HomG(X,RY)).

For the right-adjoint, let S(X) = X with the trivial topology and S(X
f
−→ Y) = f

(any map into a space with trivial topology is continuous). Again, there is a

natural continuous map X id
−→ SRX for any G-space X and RS = id, so the two are

adjoint. �

1.3.3. Topological G-Modules.

1.3.3.1. MG is Quasi-Abelian. A topological G-module A is an abelian topolog-

ical group which is also a G-module, such that the action G×A→ A is continuous.

In this section, we will be working with the categoryMG of (not necessarily Haus-

dorff) topological G-modules, where the morphisms are continuous G-equivariant

homomorphisms of G-modules.

First we note that MG is an additive, in fact G-linear, category (that is, each

Hom(A,B) set is a G-module). The G-module {0} is the zero object, and for any two

topological G-modules A and B, the G-module A ⊕ B with the product topology is

clearly the product, and also the direct sum. Indeed, the inclusions A ↪→ A⊕B and

B ↪→ A⊕B are continuous (being the product of the identity and the zero map), and

given two maps f : A→ C, f ′ : B→ C inMG, the map A⊕B→ C : (a, b) 7→ f (a)+ f (b)
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is continuous, being the composition A ⊕ B
( f , f ′)
−−−→ C ⊕ C +

−→ C. Similarly, if we have

two morphisms f , f ′ : A → B then the morphism f + f ′ : a 7→ f (a) + f ′(a) is

continuous, the map − f : a 7→ − f (a) = f (−a) is continuous, and for any g ∈ G the

map (g · f )(a) = g · f (a) is continuous. This makes Hom(A,B) into a G-module (of

course the zero map is still continuous), and composition of morphisms is bilinear.

Note that these arguments also work for the category Mne
G of topological G-

modules where the maps are continuous homomorphisms which are not (G)-

equivariant (hence the notation “ne”), soMne
G is a G-linear category.

The kernel of a map f : A → B in MG is the usual kernel k : K ↪→ A, where

K = {a ∈ A | f (a) = 0}, with the subspace topology. It is easy to check that K is

a topological G-module, and that it satisfies the universal property. The cokernel

of a map A
f
−→ B is the quotient map c : B → C, where C = B/ f (A) with the

quotient topology. The map c is open, so C is a G-space, and it is easy to see that

C is a topological G-module which satisfies the universal property. This implies

that fibered products and fibered coproducts inMG exist and are exactly what we

would expect. The same reasoning applied for G = 1 shows that, as long as a map

f : A→ B is G-equivariant, it has a kernel and a cokernel inMne
G .

InMG, a map f : A→ B is proper (see Section 1.2.1) if and only if it is open as

a map onto its image: coker(ker f ) = A/ker f and ker(coker f ) = Im( f ); as a map

of G-modules, φ : A/ker f → Im( f ) is an isomorphism, and the map is continuous

because f is continuous, so in order for φ to be a homeomorphism we need φ to be

open, which is the same as saying f is open as a map onto its image. An injective

map in MG is proper if and only if it is a homeomorphism onto its image; thus,

proper monomorphisms, which are kernels of their own cokernels, are precisely

the maps which are homeomorphisms onto their image. A surjective map inMG

is proper if and only if it is open; thus, proper epimorphisms, which are cokernels

of their own kernels, are precisely the open continuous surjective maps. The same

is true for a G-map inMne
G .
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A sequence 0→ A
f
−→ B

g
−→ C→ 0 of topological G-modules is exact if and only

if the sequence is exact a sequence of G-modules, f is a homeomorphism onto its

image, and g is open (if g is a quotient map, then it is automatically open). Note

that if C is Hausdorff then A = g−1({0}) is a closed subgroup of C.

Proposition 1.3.8. MG is a quasi-abelian category.

Proof. The pullback of a proper epimorphism is a proper epimorphism, since

openness and surjectivity are preserved under pullback even in the category of

topological spaces (see the proof of Proposition 2.2.8). We just have to show that

the pushout of a proper monomorphism is a proper monomorphism. To see this,

suppose f : A ↪→ B is a proper monomorphism and g : A → C is any map in

MG. Then B tA C = (B ⊕ C)/H, where H = 〈 f (a),−g(a) | a ∈ A〉. The pushout

f ′ : C→ B tA C is injective because if f ′(c) ∈ H then c = −g(a) for some a ∈ A such

that f (a) = 0, but f is injective so a = 0, hence c = 0.

We now show that f ′ is open as a map onto its image. Let q : B⊕C→ BtA C be

the quotient map (which is an open map), U be an open set in C, and u0 ∈ U. There

is a neighborhood V of 0 in C such that V+V ⊆ U−u0. Since f is a homeomorphism

onto its image, there is an open set W in B with W ∩ f (A) = f (g−1(V)). I claim that

q(W× (u0 + V))∩ f ′(C) ⊆ f ′(U), so q(W× (u0 + V)) is a neighborhood of f ′(u0) whose

intersection with f ′(C) is contained in f ′(U). This implies f ′(U) is open in f ′(C). To

verify this, suppose w ∈ W, v ∈ V and q(w,u0 + v) ∈ f ′(C). Then there exists c ∈ C

and a ∈ A such that (w,u0 + v) = ( f (a), c − g(a)). But if w = f (a) then w ∈ f (A) and

W ∩ f (A) = f (g−1(V)), so f (a) ∈ f (g−1(V)), which implies g(a) = v′ ∈ V since f is

injective. Then

u0 + v = c − g(a)⇒ c = u0 + v + g(a) = u0 + v + v′.

But u0 + V + V ⊆ U, so c ∈ U, i.e. q(w,u0 + v) ∈ f ′(U), as desired. �

1.3.3.2. The Categories of Topological G-modules.

(1) MG is the category of all topological G-modules,
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(2) Mpm
G is the category of all pseudometrizable topological G-modules (i.e.

those whose topology is induced by some pseudometric - see below for the

definition),

(3) MH
G is the category of Hausdorff G-modules,

(4) Mm
G is the category of metrizable G-modules,

(5) Mcm
G is the category of completely metrizable G-modules (i.e. those whose

topology is induced by some complete metric), and

(6) MP
G is the category of Polish G-modules, i.e. second countable10 completely

metrizable G-modules.

A pseudometric11 on a set X is a function d : X × X→ R≥0 such that

(1) d(x, x) = 0 for all x ∈ X,

(2) d(x, y) = d(y, x) for all x, y ∈ X,

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

A pseudometric induces a topology on X just as a metric does: a basis for the

topology is the collection of open balls B(x, ε) = {y ∈ X | d(x, y) < ε} for x ∈

X, ε ∈ R>0. The only difference between a pseudometric and a metric is that for a

pseudometric d, we could have d(x, y) = 0 with x , y.

We showed in Section 1.3.3 thatMG is quasi-abelian. In fact, all the categories

mentioned above are quasi-abelian. First note that finite products exist in all the

categories: the product of two Hausdorff spaces is Hausdorff; the product of two

pseudometric spaces is pseudometrizable, with pseudometric given by the sum of

the two pseudometrics; thus the product of two metric spaces is metrizable; the

product of two complete metric spaces is complete; and the product of two second

countable spaces is second countable. Second, note that kernels exist: the kernel

in MG for any map in the above categories is also in the respective category: a

subspace of a Hausdorff (resp. pseudometrizable, metrizable, second countable)

10A topological space is second countable if there is a countable base for the whole space.
11It is also sometimes called a semimetric [37], since it is so closely related to the notion of

seminorm.
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space is Hausdorff (resp. pseudometrizable, metrizable, secound countable), and

inMcm
G the kernel is a closed subspace, which is also complete. Thus the fibered

products in these categories exist and are the same as inMG.

However, cokernels do not always exist. For instance, inMH
G ,Mm

G ,Mcm
G , andMP

G

the cokernel of a map f : A → B exists if and only if the image of A is closed in B,

though inMpm
G , cokernels do always exist (see Lemmas 1.3.10 and 1.3.9 below, and

note that the quotient topology of a second countable topological group is second

countable). To see that cokernels do not always exist in MH
G ,M

m
G ,M

cm
G , and MP

G,

note that if f : A → B is a map that has a cokernel c : B → C then c is the cokernel

of its own kernel K → B, where K = c−1(0) viewed as a subspace of B. Because c is

continuous and C is Hausdorff, c−1(0) is closed in B, i.e. the image of f is closed in

B. This means f does not have a cokernel if its image is not closed in B.

In light of all of this, inMG andMpm
G a morphism f : A→ B is proper if and only

if it is open as a map onto its image, and inMH
G ,M

m
G ,M

cm
G , andMP

G, f is proper if

and only if it is open as a map onto its image and the image of f is closed in B. This

is because f must have a cokernel, so the image of f must be closed; conversely,

if the image of f is closed and f is open onto its image, then ker(coker f ) exists;

coker(ker f ) exists because the image of ker f is f −1(0), which is closed because f

is continuous and B is Hausdorff; and the map coker(ker f ) → ker(coker f ) is an

isomorphism. Proper epimorphisms are cokernels, hence just the open continuous

surjective maps, and proper monomorphisms are kernels, i.e. injective maps

which are homeomorphisms onto their image, which must be closed if they are in

M
H
G ,M

m
G ,M

cm
G , orMP

G, i.e. closed embeddings.

The pullback of a proper epimorphism is a proper epimorphism and always

exists by the reasoning for MG, so these categories satisfy (Q2). The pushout

of a proper monomorphism is a homeomorphism onto its image by the proof of

Proposition 1.3.8 and thus always exists in Mpm
G , so Mpm

G satisfies (Q2*). In the

subcategories ofMH
G , the image of a proper monomorphism f : A → B is closed

in B. For any map h : A → C, the pushout f̃ : C → B tA C of f has closed image
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because the pullback of f̃ (C) to B ⊕ C is f (A) × C, which is closed. But since C

is Hausdorff, {0} is closed in C and C is a closed subgroup of B tA C, so {0} is

closed in B tA C, i.e. B tA C is Hausdorff. This shows that the pushout of a proper

monomorphism exists and is a proper monomorphism inMH
G ,M

m
G ,M

cm
G , andMP

G.

Hence all of these categories satisfy (Q2*) and thus are quasi-abelian.

Lemma 1.3.9. If B is a subgroup of the topological abelian group A, and the topology of

A is induced by a translation-invariant pseudometric d, then the topology of A/B is induced

by a translation-invariant pseudometric d′ given by d′(x + B, y + B) = infb∈B d(x + b, y).

Proof. This is [37, Lemma 12.3.1]. See also Examples 1 and 2 on p. 238, p. 239

in [37]. �

Lemma 1.3.10. If B is a closed subgroup of a complete metric G-module E, then the

quotient I = E/B is a complete metric G-module.

Proof. I has a pseudometric induced from E by Lemma 1.3.9, and I is Hausdorff

since B is a closed subgroup. We just need to show I is complete; the proof

is basically the same as the corresponding proof when metric completeness is

replaced by completeness with respect to the two-sided uniformity [4, Chapter

IX, §3.1, Proposition 4]. Suppose (xn) is a Cauchy sequence in I. By passing to a

subsequence if necessary, we can assume that for all n = 1, 2, . . . for all p, q ≥ n we

have d(xp, xq) < 2−n. This means for all p, q ≥ n and all y ∈ xp, z ∈ xq there exists b ∈ B

such that d(y, z + b) < 2−n. Now we choose a sequence (xn) in E as follows: let x1 be

any element in x1 and inductively define xn+1 for n ≥ 1 to be an element in xn+1 such

that d(xn, xn+1) < 2−n. Then, by induction, d(xn, xn+p) < 2−n + 2−(n+1) + · · ·+ 2−(n+p−1) <

21−n. Thus (xn) is a Cauchy sequence in E, hence converges to some x ∈ E, and since

the quotient map E→ I is continuous, (xn) converges to x̄. �

1.3.3.3. Adjoints, Injectives and Projectives.
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Theorem 1.3.11. The forgetful functor MG → CG has a left adjoint F. The abelian

group underlying FX for X ∈ CG is the free abelian group on X. All limits and colimits

exist inMG, and the underlying abelian group is the limit or colimit of the G-modules.

Proof. This follows from the general work of Oswald Wyler [38]. �

For explicit descriptions of the topology of FX for X ∈ CG and much discussion

on this topic, the standard references are [19] and [9]. An explicit description is

certainly nontrivial. For example, on a related note, finding an explicit description

of the topology of a colimit in MG, in fact even the topology of the coproduct of

infinitely many topological G-modules, is not easy, but doable - see [25], [11], and

[6].

Recall that the sup topology of a collection of topologies Ti on a set X is the

weakest topology finer than all of the Ti. It has as a basis for its open sets the sets

of the form U1 ∩ · · · ∩Un where each U j is open in some Ti.

Lemma 1.3.12 (Sup Topology). If (Ti)i∈I is a collection of topologies on a G-module

(resp. G-space) A such that A is a topological G-module (resp. G-space) under each Ti,

then A remains a topological G-module (resp. G-space) under the sup topology of all the

Ti.

Proof. This follows from [38], but we give a direct proof. To see that A is a

G-space, suppose without loss of generality that g ∈ G, x ∈ A, and g · x ∈ U =

U1 ∩ · · · ∩ Un, with Ui open in Ti, i = 1, . . . ,n. Then for each i there is an open set

Vi 3 g in G and an open set Wi 3 x in Ti such that Vi ·Wi ⊆ Ui, so V =
⋂

Vi is a

neighborhood of g and W =
⋂

Wi is a neighborhood of x such that V ·W ⊆ U.

Similarly, to see that A is an abelian topological group under T (hence topological

G-module), suppose x1, x2 ∈ A and x1 − x2 ∈ U = U1 ∩ · · · ∩Un, with Ui open in Ti.

For each i there are open sets Vi 3 x1 and Wi 3 x2 with Vi−Wi ⊂ Ui, so V =
⋂

Vi is a

neighborhood of x1 and W =
⋂

Wi is a neighborhood of x2 such that V−W ⊆ U. �
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Recall that, given a map f : X → Y, where Y is a topological space, the weak

topology on X with respect to f is the coarsest topology such that f is continuous;

it has for its open sets the sets f −1(U) such that U is open in Y.

Lemma 1.3.13. If B
f
−→ A is a morphism of G-modules (resp. G-sets) and A is a

topological G-module (resp. G-space), then the weak topology T on B with respect to f

makes B a topological G-module (resp. G-space).

Proof. This also follows from [38], but we give a direct proof. To see that T is

a topology for a G-space, note that if g ∈ G, b ∈ B with g · b ∈ U = f −1(V) for some

open set V ⊆ A then g · f (b) ∈ V so there are open sets V1 3 g in G and V2 3 f (b)

in A such that V1 · V2 ⊆ V. This implies V1 is a neighborhood of g and f −1(V2) is a

neighborhood of b such that V1 · f −1(V2) ⊆ U, i.e. A is a G-space.

To see that T is a topology for an abelian topological group (hence topological

G-module), note that if b1, b2 ∈ B with b1 − b2 ∈ U = f −1(V) for some open set V ⊆ A

then there are open sets Vi 3 f (bi), i = 1, 2, such that V1 − V2 ⊆ V, and so f −1(Vi) is

a neighborhood of bi, i = 1, 2, such that f −1(V1) − f −1(V2) ⊆ U. �

Proposition 1.3.14. The forgetful functor fromMG to G-mod has a left and a right

adjoint.

Proof. The proof is the same as that of Proposition 1.3.7. �

Proposition 1.3.15. The injective objects of MG are the injective G-modules with

trivial topology. The projective objects of MG are the projective G-modules P with the

largest possible topology making P a topological G-module.

Proof. We will only do the proof for the case of injective objects, since the proof

for projective objects is dual. If A is an injective G-module with trivial topology, then

it is injective inMG because by Proposition 1.3.14, the functor taking a G-module

to a topological G-module with trivial topology has an exact left adjoint.

Conversely, suppose A is an injective topological G-module. If A does not have

the trivial topology, then consider the map α = id : A → A0, where A0 = A as
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a G-module, with trivial topology, and the map β = id : A → A. Note α is a

monomorphism because it is injective (setwise). There is no map γ of topological

G-modules A0 → A such that γ ◦ α = β because the map would have to be the

identity, which is not continuous.

If A is not an injective G-module then there are maps α : B→ C and β : B→ A

of G-modules such that there is no map γ of G-modules with γ ◦ α = β. If we put

the trivial topology on C and the topology induced on B by β, then these become

maps of topological G-modules. �

The preceding proposition can be interpreted in two different ways. On the one

hand, with the usual definition of “enough,” it shows that there are indeed enough

injectives and projectives. Any topological G-module A injects into one with the

trivial topology: pick an injective G-module B such that there is an injection A ↪→ B

in G-mod and put the trivial topology on B; dually for projective G-modules.

However, this does us no good because we want our injection A ↪→ B to be a

proper map, since exact sequences can only be defined for proper maps, so putting

the trivial topology on B would force the topology on A to be trivial, hence only

topological G-modules with trivial topologies could possibly have an injective

resolution. Thus there are not enough injectives or projectives in the sense that we

would want.

1.3.3.4. Abelian Group Objects inCG. Let y be the functor fromCG to the category

of presheaves of sets onMG taking a G-space X to the presheaf HomCG(−,X).

Proposition 1.3.16. A presheaf on CG represented by a G-space X is a presheaf of

abelian groups if and only if X is a topological G-module. Any homomorphism y(A)→ y(B)

of presheaves of abelian groups for A,B ∈ MG comes from a unique morphism of topological

G-modules A→ B. That is, the category of abelian group objects in CG is the categoryMG.

Proof. It is well-known that for a category C with a final object pt and finite

products the following two definitions of an abelian group object X in C are equiv-

alent: (1) the functor Hom(−,X) from C to Set factors through Ab.
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(2) We have the following data:

(a) A map X × X m
−→ X in C

(b) A map e : pt→ X

(c) A map inv : X→ X

satisfying the commutative diagrams for associativity, identity, inverse, and com-

mutativity conditions. Clearly the latter definition is equivalent to X being a

topological G-module, since these conditions say that X is an abelian group; the

map m : X × X→ X being a map of G-spaces says that addition is continuous and

g · (x + y) = g · x + g · y; and inv being a map of G-spaces says that inversion X→ X

is continuous.

Addition of functions is addition pointwise, i.e. for any x ∈ X, where X ∈ CG,

and any two morphisms f , g : X → A, where A ∈ MG, we have ( f + g)(x) =

f (x) + g(x). This is because if ( f , g) : X → A × A is the product of f and g and

π1, π2 : A × A → A are the two projections, then addition on A is given by π1 + π2

and (π1 + π2)( f , g) = π1( f , g) + π2( f , g) = f + g (the first equality is due to the fact

that the map Hom(A × A,A) → Hom(X,A) given by precomposing with ( f , g) is a

homomorphism of abelian groups).

Now, the Yoneda correspondence says that a map α : y(A)→ y(B) corresponds

to the map f = α(idA) : A → B of G-spaces. We just have to show that f is a

homomorphism of abelian groups. Since f induces a homomorphism of abelian

groups Hom(A×A,A)→ Hom(A×A,B) we have f (π1 +π2) = fπ1 + fπ2. Applying

this to an element (x, y) ∈ A×A we get f (x+y) = f (π1 +π2)(x, y) = ( fπ1 + fπ2)(x, y) =

f (x) + f (y) (the last equality follows from the fact that addition of functions is

pointwise, proved in the last paragraph). �
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CHAPTER 2

Cohomology Theories Using Grothendieck Topologies

In this chapter we show that certain cohomology theories for topological groups

which are defined by using cochains (“cochain theories”) can be reinterpreted as

cohomologies of Grothendieck topologies (Section 2.1). The original motivation

for this result is that it allows these theories to be applied to number theory as in

[17]. However, this reinterpretation may also allow for new comparisons of these

theories to Wigner’s semisimplicial cohomology [35]; this is addressed in Section

2.2.6.

In Section 2.2 we give some examples of new cohomology theories which we

feel are natural, for a topological group G using topologies on the category CG of

G-spaces. We also recall Lichtenbaum’s topology [17], which we denote by TL
G,

and compare these topologies to one another. We then give a comparison of the

semisimplicial theory Hn
ss(G,A) of Wigner to the cochain theories from Section 2.1.

In Section 2.3 we show that, for any topology T on CG or CG,∗ (the category of

pointed G-spaces), any short exact sequence

0→ A→ B τ
−→ C→ 0

of topological G-modules such that τ has a refinement by a covering in T, gives rise

to long exact sequences on cohomology.

2.1. Grothendieck Topologies and Cochain Theories

Throughout Section 2.1.1, let G be any topological group and A any topological

G-module. We discuss several ways to define cohomology theories Hn(G,A) that

we will be reinterpreting as cohomologies of Grothendieck topologies. In Sections

2.1.2, 2.1.3, 2.1.4, and 2.1.5 we discuss several ways to reinterpret each theory in
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terms of various Grothendieck topologies and sheaves on these topologies. The

purpose is to provide more applicability of these cochain theories.

2.1.1. The Cochain Theories. In this subsection we first define the four cochain

theories we will be using. We note (using the theory in Section 3.2) that H1(G,A) is

the same for three of the theories, and it is the same for all of the theories under some

restrictions. Next, we show that the original definition (which uses inhomogeneous

cochains) is equivalent to a similar definition using homogeneous cochains. Finally,

for each theory we consider C̃n(G,A), the set of cochains which map (e, . . . , e) in Gn

to 0 ∈ A and show that the cohomology of the complex (C̃n(G,A))∞n=0 is the same

if we leave C̃0(G,A) as the original C0(G,A). Otherwise, the cohomology differs

slightly, namely in the 0th and 1st levels.

2.1.1.1. Definition of the Cochain Theories. All of the cochain theories are defined

as the cohomology of the complex of inhomogeneous (Cn(G,A), δn) (described

below); C0(G,A) is always just A (thought of as the set of maps from G0 = pt to A);

and the coboundary homomorphism is given by

δn( f )(g0, . . . , gn) = g0 f (g1, . . . , gn)

+

n∑
k=1

(−1)k f (g0, . . . , gk−1gk, . . . , gn)(3)

+ (−1)n+1 f (g0, . . . , gn−1).

The continuous cochain theory Hn
c (G,A) is dicussed in great detail in Section

3.1. It is defined to be the cohomology of the complex of continuous cochains

Cn
c (G,A) = {continuous maps f : Gn

→ A}.

The measurable cochain theory Hn
m(G,A) is discussed in Section 3.2. Through-

out this chapter, Hn
m(G,A) will be the cohomology of the complex of measurable

cochains Cn
m(G,A) = {measurable maps f : Gn

→ A}. Recall a subset of a topological
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space X is measurable if it is in the Borel σ-algebra of X, the σ-algebra1 generated

by the open subsets of X. A map f : X → Y of topological spaces is measurable

if f −1(U) is measurable for every measurable subset U ⊆ Y. This is equivalent

to saying f −1(U) is measurable for every open subset U ⊆ Y since f −1 preserves

complements, unions, and intersections. When G is locally compact and Polish

and A is Polish, this is called Moore cohomology.

The locally continuous cochain theory Hn
lc(G,A) is the cohomology of the com-

plex of locally continuous cochains [34]:

Cn
lc(G,A) =

 f : Gn
→ A | ∃ open subset U ⊆ Gn, (e, . . . , e) ∈ U,

such that f |U is continuous


Note that the product of two locally continuous maps is locally continuous.

Also, if we have a composition of two maps f : X → Y, g : Y → Z such that

f is continuous on some neighborhood U of x ∈ X and g is continuous on some

neighborhood V of f (x) ∈ Y then g◦ f is continuous on the neighborhood f −1(V)∩U

of x. Indeed, for any open set W ⊆ Z we know g−1(W) ∩ V is open in Y, so

(g◦ f )−1(W)∩( f −1(V)∩U) = f −1(g−1(W)∩V)∩U is open. In particular, precomposing

or postcomposing a locally continuous map with a continuous one results in a

locally continuous map.

The locally continuous measurable cochain theory Hn
lcm(G,A) is the cohomol-

ogy of the complex of locally continuous measurable cochains [15]:

Cn
lcm(G,A) =

 measurable maps f : Gn
→ A | ∃ open subset

U ⊆ Gn, (e, . . . , e) ∈ U, such that f |U is continuous


2.1.1.2. H0(G,A) and H1(G,A). For each cochain theory, we have H0(G,A) = AG.

By Lemma 3.2.2, any crossed homomorphism which is continuous at some point

1A σ-algebra of subsets of X is a collection of subsets which is closed under taking complements,

countable unions, and countable intersections.
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is continuous everywhere, so

H1
c (G,A) � H1

lc(G,A) � H1
lcm(G,A)

for any G and any A. On the other hand, if G is a first countable Baire group (see

Section 3.2) and A is a second countable topological G-module, then Theorem 3.2.6

implies H1
c (G,A) � H1

m(G,A).

2.1.1.3. Homogeneous vs. Inhomogeneous Cochains. For each cochain theory

Hn
•
(G,A) defined above, we define the complex of homogeneous cochains by set-

ting Cn
•,h(G,A) to be the set of G-equivariant maps Gn+1

→ A that satisfy the respec-

tive properties in the definition of the cochain theory. Here, Gn+1 is the product of

n + 1 copies of G, with diagonal G-action, and the coboundary homomorphism is

defined by

(4) dn( f )(g0, . . . , gn) =

n∑
i=0

(−1)i f (g0, . . . , ĝi, . . . , gn)

(as usual, ĝi means the gi term is omitted).

Theorem 2.1.1. Each of the cohomology groups Hn
•
(G,A) is isomorphic to the coho-

mology of the homogeneous complex (Cn
•,h(G,A), dn).

Proof. We use the standard argument in group cohomology, found for example

in [30, p. 112-3]. Explicitly, we use the isomorphism of abelian groups Cn
•,h(G,A) ∼−→

Cn
•
(G,A) given by precomposing with the continuous map

Gn
→ Gn+1 : (g1, . . . , gn)

φn
−→ (e, g1, g1g2, . . . , g1 · · · gn).

Note that if f : Gn+1
→ A is continuous, measurable, and/or locally continuous, then

so is f ◦φn. The inverse isomorphism Cn
•
(G,A) ∼−→ Cn

•,h(G,A) takes a map f : Gn
→ A

to the G-equivariant map f̃ (g0, g1, . . . , gn) = g0 · f (g−1
0 g1, g−1

1 g2, . . . , g−1
n−1gn). Thus, f̃

is the composition

Gn+1 b
−→ G × Gn id× f

−−−→ G × A a
−→ A

44



where a is the action of G on A and b(g0, . . . , gn) = (g0, (g−1
0 g1, . . . , g−1

n−1gn)). Note

that both a and b are continuous, so if f is continuous, measurable, and/or locally

continuous, the same is true for f̃ . �

Remark. If f is measurable, G has measurable multiplication G × G → G

and inversion G → G, and A has measurable G-action G × A → A, then f̃ is still

measurable, so the argument still applies; this is used in Section 2.1.3.

2.1.1.4. Cochains That Take the Identity to 0. Let Cn(G,A) = Cn
•,h(G,A) be the set

of homogeneous cochains for any of the cochain theories above, and for n ≥ 1

let C̃n(G,A) be the subset of Cn(G,A) consisting of maps f : Gn+1
→ A which take

(e, . . . , e) to 0 ∈ A. Let C̃0(G,A) = C0(G,A) � A. Define the coboundary operators for

the two complexes as before, by equation (4) (note that the image of C̃0(G,A) does

indeed land in C̃1(G,A)). We will show that the cohomologies of the two complexes

are the same2. There is a short exact sequence of complexes

0 0 0 0

↓ ↓ ↓ ↓

0→ C̃0(G,A) δ
−→ C̃1(G,A) δ

−→ C̃2(G,A) δ
−→ C̃3(G,A) δ

−→ · · ·

↓ ↓ ↓ ↓

0→ C0(G,A) δ
−→ C1(G,A) δ

−→ C2(G,A) δ
−→ C3(G,A) δ

−→ · · ·

↓ ↓ ↓ ↓

0 → A id
−→ A 0

−→ A id
−→ · · ·

↓ ↓ ↓ ↓

0 0 0 0

where the vertical maps Cn(G,A)→ A are “evaluation at (e, . . . , e) ∈ Gn+1” (for n ≥ 1)

and the vertical maps C̃n(G,A)→ Cn(G,A) are inclusions. The maps Cn(G,A)→ A

are surjective because, for example, for every a ∈ A the map f (g0, . . . , gn) = g0 · a

maps to a ∈ A. The cohomology of the bottom complex is 0, so if H̃n(G,A) is the

2This argument is due to Thomas Goodwillie (private communication).
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cohomology of the top complex and Hn(G,A) is the cohomology of the middle

complex, then H̃n(G,A) = Hn(G,A) for all n.

Remark 1. The same argument shows that if Cn(G,A) is the set of inho-

mogeneous cochains and C̃n(G,A) the set of inhomogeneous cochains that take

(e, . . . , e) ∈ Gn to 0 ∈ A with C̃0(G,A) = C0(G,A) � A and coboundary given by (3)

(the image of C̃0(G,A) again lands inside C̃1(G,A)), then the cohomologies of the

two resulting complexes are also the same.

Remark 2. It is shown in [15, Corollary 1] that the Hn
lcm(G,−) form an exact

connected sequence of functors with respect to the short exact sequences 0→ A′
p
−→

A
q
−→ A′′ → 0 inMP

G which are locally split, i.e. there is a neighborhood U of 0 in

A′′ and a map s : U → A such that q ◦ s = idU. This fact may be easier to see if

we define the cohomology using C̃n(G,A), the set of locally continuous measurable

maps f : Gn
→ A such that f (e, . . . , e) = 0, with C̃0(G,A) = A, as in Section 2.1.1.4.

Remark 3. If we work with homogeneous cochains and set

C̃0(G,A) = {G-equivariant maps f : G→ A | f (e) = 0}

then C̃0(G,A) = 0 and the cohomology Hn(G,A) of the resulting complex changes for

n = 0, 1: H0(G,A) = 0 and H1(G,A) = Z1(G,A) is the set of crossed homomorphisms

(without taking quotient by the coboundaries). A similar comment applies if

working with inhomogeneous cochains. Of course, H1(G,A) does not change if the

action of G on A is trivial because in this case the coboundaries are 0.

2.1.2. Continuous Cochains. Let Tc
G be the topology on the category CG of G-

spaces whose coverings are single maps { f : X→ Y} such that there is a continuous

(not necessarily G-equivariant) section s : Y→ X (so f ◦ s = idY).

Proposition 2.1.2. Tc
G is subcanonical.

Proof. For any G-space Z and any covering { f : X→ Y}, the diagram

Hom(Y,Z)→ Hom(X,Z)⇒ Hom(X ×Y X,Z)
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is exact because we know it is exact in the category of G-sets, i.e. given a map

h : X→ Z such that h ◦π1 = h ◦π2 (π1, π2 : X×Y X→ X are the projections), there is

a unique h′ : Y→ Z with h′ ◦ f = h. But then h′ = h′ ◦ f ◦ s = h ◦ s is continuous. �

Remark 1. This proposition will be used in Sections 2.1.3, 2.1.4, and 2.1.5 as well.

Note that if h : X→ Z is measurable and the section s is measurable (or continuous),

then h′ = h◦s is also measurable. If h is continuous on some neighborhood of x ∈ X,

f : (X, x)→ (Y, y) is a locally continuous map, and there is a locally continuous (or

continuous) section s : (Y, y) → (X, x) then h′ = h ◦ s is a composition of locally

continuous maps, hence is locally continuous. Similarly, if h is locally continuous

and measurable and s(Y, y) → (X, x) is locally continuous and measurable (or just

continuous) then h′ = h ◦ s is locally continuous and measurable. In fact, if s is

continuous, then it is not essential that s(y) = x since the composition of a locally

continuous function with a continuous function is locally continuous.

Lemma 2.1.3. {G × X id
−→ G × X} is a cofinal covering in Tc

G for any topological space

X with trivial G-action.

Proof. Given a covering { f : Y → G × X}, there is a continuous section s :

G×X→ Y. Define t : G×X→ Y by t(g, x) = g ·s(e, x). Then f (t(g, x)) = f (g ·s(e, x)) =

g · f (s(e, x)) = g · (e, x) = (g, x), i.e. f ◦ t = idG×X, so {G × X id
−→ G × X} refines

{ f : Y→ G × X}. �

Remark 2. Note that t in the above lemma is the composition

G × X id×e×id
−−−−−→ G × G × X id×s

−−−→ G × Y a
−→ G

where a : G × Y → G is the G-action and e is the constant map with value e ∈ G.

Therefore, if s is measurable and/or locally continuous, so is t (this is used in Sections

2.1.3, 2.1.4, and 2.1.5).

Lemma 2.1.4. {Gn id
−→ Gn

} is a cofinal covering (of Gn) in Tc
G for every n ≥ 1 (where

the action of G on Gn is diagonal). In fact, for n = 1 this is true for any topology T on CG.
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Proof. For n = 1, suppose we have a covering {Xi
fi
−→ G}. Pick any i. Since fi is a

map of G-sets, there is an x ∈ Xi with fi(x) = e ∈ G. Define f : G→ Xi by f (g) = g ·x;

then f is continuous since Xi is a G-space, and fi ◦ f = idG. Now assume n > 1.

Let Gn = G × Gn−1, where the action of G on Gn is on the left coordinate, i.e. g ·

(g1, g2, . . . , gn) = (gg1, g2, . . . , gn). Clearly, Gn is a G-space. There is an isomorphism

φ : Gn
→ Gn of G-spaces defined by φ(g1, . . . , gn) = (g1, g−1

1 g2, . . . , g−1
n−1gn). The

inverse is given by φ−1(g1, . . . , gn) = (g1, g1g2, . . . , g1g2 · · · gn). Now {Gn
id
−→ Gn} is

a cofinal covering in Tc
G by Lemma 2.1.3, so {Gn id

−→ Gn
} is a cofinal covering as

well. �

Remark 3. Note that, since the isomorphism φ is continuous and has continu-

ous inverse, it is in particular locally continuous and measurable, and has locally

continuous measurable inverse (this is used in Sections 2.1.3, 2.1.4, and 2.1.5). Fur-

thermore, it can be written as a composition of products of the G-operations and

projections onto certain coordinates, and if these are measurable instead of being

continuous, φ is still measurable, and so is φ−1 (this is used in Section 2.1.3).

Lemma 2.1.5. If {X id
−→ X} is a cofinal covering of X in a Grothendieck topology T, then

the functor F 7→ F(X) is an exact functor from S(T) to Ab.

Proof. The functor Γ(−,X) is always left-exact, so we just have to show that

if we have an epimorphism F1
α
−→ F2 of sheaves on T then α(X) : F1(X) → F2(X)

is surjective. For every section s ∈ F2(X) there exist a covering {Ui → X} and

elements si ∈ F1(Ui) for all i such that s|Ui = α(Ui)(si) for all i by Lemma 1.1.5.

But {X id
−→ X} is cofinal, so it factors through some Ui, which means we have

α(X)(si|X) = (α(Ui)(si))|X = (s|Ui)|X = s, i.e. α(X) is surjective. �

Remark 4. This lemma implies that if the coverings in a topology T on a category

C are just families of single maps {Y
f
−→ X} such that there is a section s of f (i.e.

f ◦ s = idX) in C, then for every object X in C, the covering {X id
−→ X} is cofinal, so

for any sheaf F on T the functor F 7→ F(X) is exact, which means Hn(T,X,F) = 0
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for all n ≥ 1, all X, and all F, i.e. T has no cohomology! In fact, such a topology is

equivalent to the trivial topology whose coverings are just isomorphisms.

Theorem 2.1.6. For any topological G-module A, the cohomology Hn(Tc
G, pt, Ã) is

isomorphic to the continuous cochain cohomology Hn
c (G,A).

Proof. By Lemmas 2.1.4 and 2.1.5, for any sheaf F on Tc
G we have Hn(Tc

G,G
n,F) =

0 since the functor F 7→ F(Gn) is exact. By Lemma 1.1.7, Hn(Tc
G, pt,F) � Hn({G →

pt},F). Now, if F = Ã then Hn({G → pt}, Ã) is precisely the cohomology of the

homogeneous complex of continuous cochains, i.e. Hn({G → pt}, Ã) = Hn
c,h(G,A) �

Hn
c (G,A) by Theorem 2.1.1. �

2.1.3. Measurable Cochains. Consider the category Cm
G of G-spaces and mea-

surable G-equivariant maps. In Cm
G , if we have two morphisms f : X → Y and

g : Z → Y then X ×Y Z = {(x, z) ∈ X × Z | f (x) = g(z)} with the subspace

topology is the fibered product in this category. First note that the projections

π1 : X ×Y Z → X and π2 : X ×Y Z → Z are the compositions of the (continuous)

inclusion X ×Y Z ↪→ X × Z and the corresponding projections from X × Z, which

are continuous, hence π1 and π2 are continuous, and in particular measurable. As

in CG, π1 and π2 are G-equivariant. Now if we have two morphisms α : W → X

and β : W → Z in Cm
G such that f ◦ α = g ◦ β then there is a map (α, β) : W → X × Z

which factors as W
γ
−→ X×Y Z ↪→ X×Z. The map (α, β) is measurable since if U and

V are open sets in X and Z, respectively, then (α, β)−1(U × V) = α−1(U) ∩ β−1(V) is

the intersection of measurable sets, hence is measurable. But this implies that γ is

measurable, because if U is an open subset of X×Y Z then U = U′∩X×Y Z for some

open set U′ ⊆ X × Z, and γ−1(U) = (α, β)−1(U′) is measurable. Finally, the map γ is

the unique map of G-sets such that π1 ◦ γ = α and π2 ◦ γ = β by consideration of

the sets involved.

Define a topology Tm
G onCm

G where the coverings are families consisting of single

morphisms of the form {X
f
−→ Y} such that f has a measurable (not necessarily G-

equivariant) section s : Y → X (so f ◦ s = idY). It is easy to check that this does
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actually give a topology: isomorphisms have a measurable section, a composition

of measurable sections is a measurable section, and if we have two measurable

functions f : X→ Z, g : Y→ Z and f has a measurable section then f̃ : X×Z Y→ Y

has the measurable section y 7→ (s(g(y)), y). In fact, this topology is subcanonical

by Remark 1 in Section 2.1.2.

Theorem 2.1.7. For any topological G-module A, the cohomology Hn(Tm
G , pt, Ã) is

isomorphic to the Moore cohomology Hn
m(G,A).

Proof. The proof is the same as that of Theorem 2.1.6. �

Proposition 2.1.8. Consider the morphism of topologies g : Tc
G → Tm

G taking a G-space

to itself (note that continuous maps are measurable). The functor g∗ is exact.

Proof. Using Lemma 1.1.6, it is enough to show any covering { f : X→ Y} in Tm
G

has a refinement by a covering in Tc
G; indeed, it has a refinement by {a : G×Ytriv → Y},

where Ytriv is Y as a topological space but with trivial G-action and a(g, y) = g · y

(this is just the action of G on Y, which is continuous because Y is a G-space, after

all). Making Y have the trivial G-action instead of the original makes the map a

G-equivariant. And {a : G × Ytriv → Y} refines { f : X → Y} since we can define a

measurable G-map h : G × Ytriv → X by h(g, y) = g · s(y), where s is a measurable

section of f ; we can easily check f ◦ h = a. �

Corollary 2.1.9. Let A be a topological G-module. Then HomCm
G
(−,A) is a sheaf on

Tc
G, and Hn(Tc

G, pt,HomCm
G
(−,A)) � Hn

m(G,A) for all n.

Proof. HomCm
G
(−,A) is precisely g∗Ã in the notation of Proposition 2.1.8, so

Hn(Tc
G, pt,HomCm

G
(−,A)) � Hn(Tm

G , pt, Ã) � Hn
m(G,A). �

Remark 1. Actually, if we redefined the measurable cohomology groups

Hn
m(G,A) in a broader setting, Theorem 2.1.7 would be true for any abelian group

object A of Cm
G , i.e. any G-space A with a commutative measurable “addition” map

A × A → A, an “identity” map 0 → A, and a measurable “additive inversion”
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map A → A satisfying the usual axioms. We will do this presently, in even more

generality.

The following construction is worth mentioning because it also gives the mea-

surable cochain theory, but in what seems to be the fullest generality. The con-

struction requires some definitions from Mackey’s work on Borel spaces [18], so

we review the necessary definitions and facts here, putting them into the context

of category theory. We define a categoryB as follows. The objects are sets X with a

Borel structure: a σ-algebra of subsets of X. We call these subsets the Borel subsets

of X. The objects of B are called Borel spaces. If the Borel structure on X is the

σ-algebra generated by the open sets in some topology on X then we say the Borel

structure is topological. A morphism f : X → Y of Borel spaces is a Borel map of

sets, i.e. f −1(U) is Borel for every Borel set U in Y. Of course, if the Borel structures

on X and Y are topological, then any continuous map f : X→ Y is Borel.

A subset U of the Borel space X is a Borel subspace if U has the σ-algebra

consisting of all sets V ∩ U such that V is Borel in X. A map f : Y → U is Borel

if and only if the induced map f : Y → X is Borel. If the Borel structure on X is

topological, then the Borel structure for U is generated by the subspace topology.

Products of Borel spaces exist: for an arbitrary family {Xi}i∈I of Borel spaces Xi,

the categorical product is X =
∏

i∈I Xi with the σ-algebra of subsets generated by

the sets π−1
i (U) such that U is a Borel subset of Xi, where πi : X → Xi is the usual

projection. If the Borel structures on Xi are topological, then the Borel structure on

X is generated by the product topology. This implies arbitrary projective limits,

and in particular fibered products, exist in this category as well.

If ∼ is any equivalence relation on the Borel space X, Y = X/ ∼ inherits a

structure of a Borel space: U ⊆ Y is defined to be a Borel subset if q−1(U) is Borel

in X, where q : X → Y is the quotient map taking x ∈ X to its equivalence class.

This is the largest Borel structure such that q is Borel and a map f : Y → Z for

some other Borel space Z is Borel if and only if f ◦ q is. Unfortunately, if the Borel
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structure on X comes from a topology, then the resulting Borel structure on Y does

not necessarily come from the quotient topology.

Example. Let X = SpecZ = {0}∪{pi}
∞

i=1 (where pi stands for the i-th prime, though

this example has nothing to do with number theory or algebraic geometry). The

topology on X is such that a nonempty set U ⊆ X is open if and only if 0 ∈ U and

U is missing only finitely many points. Consider the equivalence relation given by

0 ∼ 0 and pi ∼ p j for all i, j. Then Y = X/ ∼= {0, p} with the trivial topology, hence

the Borel σ-algebra on Y is the trivial one. But if q : X → Y is the quotient map,

then q−1({0}) = {0} = ∩i(X r {pi}) is the intersection of countably many open sets,

hence is in the Borel σ-algebra for X, so {0} is in the quotient Borel structure for Y.

Thus, the quotient topology does not induce the quotient Borel structure for Y.

Let G be a Borel group: a group which is also a Borel space such that “multipli-

cation” G×G→ G and “inversion” G→ G are Borel functions, i.e. a group object in

B (a group object technically requires that the “identity” map pt→ G be Borel but

this is automatically true). Let BG be the category whose objects are Borel spaces

with a Borel G-action G × X → X and morphisms are Borel G-maps. Note that

fibered products exist by the same proof as for the category B, or by the proof for

the category Cm
G . Let TG,B be the topology on BG whose coverings consist of single

morphisms X
f
−→ Y which have a Borel global section. TG,B is indeed a subcanonical

topology, by Remark 1 in Section 2.1.2.

For a Borel group G, we call a G-module A a Borel G-module if its G-action

G×A→ A, addition A×A→ A, and additive inversion A→ A are all Borel maps.

We define Cn
B(G,A) to be the set of Borel maps from Gn to A, where C0

B(G,A) = A is the

set of constant maps, and use the inhomogeneous coboundary operator (equation

(3)) to define a complex, whose n-th cohomology we denote by Hn
B(G,A). Of

course, if G is a topological group and A is a topological G-module then Hn
B(G,A) =

Hn
m(G,A).

Theorem 2.1.10. Hn(TG,B, pt, Ã) � Hn
B(G,A) for all n ≥ 0.
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Proof. The proof is the same as before. The proofs of Lemmas 2.1.3 and 2.1.4

and Theorem 2.1.1 rely on compositions of addition/subtraction on A, the G-action

on A, and multiplication in G, all of which are Borel functions, and the composition

of Borel functions is Borel. See Remarks 2 and 3 in Section 2.1.2 and Remark 1 in

Section 2.1.1.3. �

2.1.4. Locally Continuous Cochains. In this section we introduce a Grothendieck

topology Tlc
G whose cohomology Hn(Tlc

G, pt,MapG,lc(−,A)) is isomorphic to that of

the locally continuous cochain theory Hn
lc(G,A) discussed in [34] and defined in

Section 2.1.1. Here, for a pointed G-space (X, x), MapG,lc((X, x),A) is the set of G-

equivariant maps X → A (not necessarily mapping x to 0) that are continuous on

some neighborhood of x.

Let Clc
G be the category of pointed G-spaces (X, x) and locally continuous mor-

phisms, i.e. G-maps f : (X, x)→ (Y, y) such that f (x) = y and there is a neighborhood

U of x such that f |U is continuous. Note Clc
G is actually a category, since a composi-

tion of two locally continuous morphisms is locally continuous, by the argument

in Section 2.1.1.

Fibered products exist in Clc
G: if we have two morphisms f : (X, x) → (Y, y) and

g : (Z, z)→ (Y, y) then the fibered product is (X×Y Z, (x, z)). The proof is basically the

same as for G-spaces. The projections X × Z → X and X × Z → Z are continuous,

hence so are the maps X ×Y Z → X and X ×Y Z → Z. The only other thing to

check is that if we have two maps α : (W,w) → (X, x) and β : (W,w) → (Z, z) with

f ◦ α = g ◦ β then the induced map γ : (W,w) → (X ×Y Z, (x, z)) is continuous in

a neighborhood of w. This is easy: if α is continuous in a neighborhood Uα of w

and β is continuous in a neighborhood Uβ of w then the map (α, β) : W → X × Z is

continuous on Uα ∩Uβ, and hence so is γ.

Define the topology Tlc
G on Clc

G by saying the coverings are single-morphism

families {(X, x)
f
−→ (Y, y)} such that f is surjective and there is a local section s of

f . This is equivalent to saying there is a morphism s : (Y, y) → (X, x) in Clc
G with
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f ◦ s = idY. It is easy to check that this actually gives a subcanonical topology; the

proof is the same as in Section 2.1.2 (the condition s(y) = x is necessary for this).

Theorem 2.1.11. For any topological G-module A, MapG,lc(−,A) is a sheaf on Tlc
G

and the cohomology Hn(Tlc
G, pt,MapG,lc(−,A)) is isomorphic to the locally continuous

cohomology Hn
lc(G,A).

Proof. First, MapG,lc(−,A) is a sheaf by Remark 1 of Section 2.1.2. By the proof

of Lemma 2.1.4, {Gn id
−→ Gn

} is a cofinal covering. Thus for any sheaf F on Tlc
G,

Hn(Tlc
G,G

n,F) = 0 for n ≥ 1 by Lemma 2.1.5. Therefore, Hn(Tlc
G, pt,MapG,lc(−,A)) �

Hn({G→ pt},MapG,lc(−,A)) by Lemma 1.1.7. But the latter is precisely the cohomol-

ogy of the homogeneous complex of locally continuous cochains Hn
lc,h(G,A), which

is isomorphic to Hn
lc(G,A) by Theorem 2.1.1. �

Remark 1. Note that the sheaf represented by (A, 0) in Tlc
G does not quite give

the same cohomology as MapG,lc(−,A). In fact, Hn(Tlc
G, pt,Hom

C
lc
G
(−,A)) � Hn({G→

pt},Hom
C

lc
G
(−,A)), and the latter is the cohomology of the complex (Cn(G,A) =

Hom
C

lc
G
(Gn+1,A), dn) consisting of locally continuous homogeneous cochains which

take (e, . . . , e) ∈ Gn+1 to 0 ∈ A. This cohomology is discussed in Remark 3 of Section

2.1.1.4.

We can also obtain the same cohomology via Tc
G:

Theorem 2.1.12. For any topological G-module A, MapG,lc(−,A) is a sheaf on Tc
G and

the cohomology Hn(Tc
G, pt,MapG,lc(−,A)) is isomorphic to the locally continuous cohomol-

ogy Hn
lc(G,A).

Proof. The proof is the same as that of Theorem 2.1.11. �

We can also consider instead the category CG,∗ of pointed G-spaces with G-

equivariant continuous maps f : (X, x)→ (Y, y) with f (x) = y and the topology Tc
G,∗

on CG,∗ whose coverings are single maps { f : (X, x) → (Y, y)} such that there is a

continuous (not necessarily G-equivariant) section s : (Y, y)→ (X, x) (i.e. f ◦ s = idY
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and s(y) = x). There is a morphism of topologiesα : Tc
G,∗ → Tc

G given by “forgetting”

the special point in a pointed G-space.

Proposition 2.1.13. For any sheaf F on Tc
G and any pointed G-space (X, x) we have

Hn(Tc
G,∗, (X, x), α∗F) � Hn(Tc

G,X,F).

Proof. This is a special case of Theorem 2.2.26 below. �

Corollary 2.1.14. For any topological G-module A, HomCG(α(−),A) is a sheaf on

Tc
G,∗ and Hn(Tc

G,∗, pt,HomCG(α(−),A)) � Hn(Tc
G, pt, Ã) � Hn

c (G,A) for all n.

Corollary 2.1.15. For any topological G-module A, MapG,lc(α(−),A) is a sheaf on

Tc
G,∗ and Hn(Tc

G,∗, pt,MapG,lc(α(−),A)) � Hn(Tc
G, pt,MapG,lc(α(−),A)) � Hn

lc(G,A) for all

n.

There is also a morphism of topologies β : Tc
G,∗ → Tlc

G since continuous maps are

locally continuous.

Proposition 2.1.16. For any sheaf F on Tlc
G and any pointed G-space (X, x) we have

Hn(Tc
G,∗, (X, x), β∗F) � Hn(Tlc

G, (X, x),F).

Proof. By Lemma 1.1.6, the proposition follows from the fact that for any cover-

ing { f : (X, x)→ (Y, y)} in Tlc
G there is a refinement by a covering {h : (G×Ytriv, (e, y))→

(Y, y)} in Tc
G,∗ just as in the proof of Proposition 2.1.8. �

Corollary 2.1.17. For any topological G-module A, Hom
Clc

G
(−,A) is a sheaf on Tc

G,∗,

and Hn(Tc
G,∗, pt,Hom

Clc
G
(−,A)) � Hn(Tlc

G, pt, Ã).

2.1.5. Locally Continuous Measurable Cochains. In this section, we will de-

fine a Grothendieck topology Tlcm
G where MapG,lcm(−,A) is a sheaf and

Hn(Tlcm
G , pt,MapG,lcm(−,A)) � Hn

lcm(G,A).

Here, for a pointed G-space (X, x), MapG,lcm((X, x),A) is the set of G-equivariant

measurable maps X→ A that are continuous in a neighborhood of x.
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We consider the category Clcm
G of pointed G-spaces (X, x) and maps f : (X, x)→

(Y, y) such that f is G-equivariant, measurable everywhere, f (x) = y, and there

is a neighborhood U of x such that f |U is continuous. In Clcm
G , if we have two

morphisms f : (X, x) → (Y, y) and g : (Z, z) → (Y, y) then the fibered product is

(X×Y Z, (x, z)), by the proofs of the same fact in the categories Clc
G (Section 2.1.4) and

C
m
G (Section 2.1.3).

Define a topology Tlcm
G on Clcm

G where the coverings are families of the form

{(X, x)
f
−→ (Y, y)} such that there exists a section s : (Y, y) → (X, x) such that s is

measurable everywhere and continuous in a neighborhood of x, and f ◦ s = idY.

This actually gives a subcanonical topology by the remark following Proposition

2.1.2.

Theorem 2.1.18. For any topological G-module A, MapG,lcm(−,A) is a sheaf on Tlcm
G

and Hn(Tlcm
G , pt,MapG,lcm(−,A)) � Hn

lcm(G,A) for all n.

Proof. The proof is the same as that of Theorem 2.1.11. �

Remark 1. Again, the cohomology of the sheaf represented by (A, 0) on Tlcm
G

is not quite the same as that of MapG,lcm(−,A), and the difference is described in

Remark 3 of Section 2.1.1.4.

Theorem 2.1.19. For any topological G-module A, MapG,lcm(−,A) is a sheaf on Tc
G

and the cohomology Hn(Tc
G, pt,MapG,lcm(−,A)) is isomorphic to the locally continuous

cohomology Hn
lcm(G,A).

Proof. The proof is the same as that of Theorem 2.1.11. �

Note there is a morphism of topologies γ : Tc
G,∗ → Tlcm

G since continuous maps

are locally continuous and measurable.

Proposition 2.1.20. For any sheaf F on Tlcm
G and any pointed G-space (X, x) we have

Hn(Tc
G,∗, (X, x), γ∗F) � Hn(Tlcm

G , (X, x),F).

Proof. The proof is the same as that of Proposition 2.1.16. �
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Corollary 2.1.21. For any topological G-module A, Hom
C

lcm
G

(−,A) is a sheaf on Tc
G,∗,

and Hn(Tc
G,∗, pt,Hom

C
lcm
G

(−,A)) � Hn(Tlcm
G , pt, Ã).

2.1.6. Remarks On These Topologies.

Proposition 2.1.22. In any Grothendieck topology T where the coverings are single-

morphism families {X → Y}, for any abelian group A, the constant presheaf A is a sheaf.

Proof. Let P be the constant presheaf. Then for any X in Cat(T),

P-(X) = lim
−−→
{Y→X}

ker(P(Y)⇒ P(Y ×X Y))

= lim
−−→
{Y→X}

ker(A⇒ A)

= lim
−−→
{Y→X}

A

= A

It follows that for any X, P--(X) = A, and P-- is the constant sheaf. �

Proposition 2.1.23. The cohomology of the constant sheaf Z for the topologies in this

section is given by H0(pt,Z) = Z and Hn(pt,Z) = 0 for n ≥ 1.

Proof. As we have seen, if F is the constant sheaf Z, then

Hn(pt,F) = Hn({G→ pt},F)

is the cohomology of the complex

F(G) id− id
−−−−→ F(G2) id− id + id

−−−−−−−→ F(G3)→ · · ·

where F(Gn) = Z for each n, because the constant presheaf Z is a sheaf. The

cohomology of this complex is precisely what is stated in the Proposition. �

Remark. In each of the topologies in this section, instead of using covers that are

single maps {X→ Y} satisfying some property (*), we could have said that a family

{Xi → Y}i∈I is a covering iff there is an index i such that the map Xi → Y satisfies
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property (*). In fact, such a topology would be the saturation of the topologies given

here. This may be necessary for applications when combining these topologies for

various groups G as in [17].

2.2. Topologies on the Category of G-Spaces

2.2.1. Definitions and Basic Properties. In this section, we work with several

topologies on the category CG of G-spaces that we feel may be suitable for a viable

cohomology theory for G.

2.2.1.1. The Canonical Topology Tcan
G . We denote the canonical topology on CG by

Tcan
G . A collectionU = {Ui

fi
−→ U}i∈I is a covering in Tcan

G if and only if all representable

presheaves satisfy the sheaf axiom forU, i.e. for every G-space X the sequence

Hom(U,X)→
∏

Hom(Ui,X)⇒
∏

Hom(Ui ×U U j,X)

is exact, and the same is true under any base change. The exactness of this diagram

is equivalent to the exactness of∐
Ui ×U U j ⇒

∐
Ui → U

which says that the map
∐

Ui → U is the coequalizer of
∐

Ui ×U U j ⇒
∐

Ui.

Sometimes, the terminology “regular epimorphism” is used to describe a map

which is the coequalizer of two arrows, so a covering in our topology consists of a

universal regular epimorphism, or a universal regular epimorphic family (if there

is more than one Ui). For brevity’s sake, we will call such coverings canonical

coverings.

It is easy to see that, in fact, a morphism is a regular epimorphism if and only if

it is a quotient map. Thus {Ui
fi
−→ U} is a covering in the canonical topology if and

only if
∐

Ui → U is a universal quotient map, which means (1) U =
⋃

fi(Ui), (2) a

subset V ⊆ U is open if and only if f −1
i (V) is open for all i, and (3) these properties

remain true under any base change. In particular, {Ui
fi
−→ U} is a covering in Tcan

G iff∐
fi :

∐
Ui → U} is a covering in Tcan

G .

58



Example. There are quotient maps which are not universal, hence not coverings

in Tcan
G . All spaces will have trivial G-action. Let X = {a, b, b′, c} where the only

nontrivial open set is {a, b},Y = {a, b, c} with trivial topology, and Z = {a, c} with

trivial topology. The map q : X→ Y defined by q(a) = a, q(b) = q(b′) = b, q(c) = c is a

quotient map (note it is not an open map - else q would be a universal quotient map).

Let f : Z ↪→ Y be the inclusion. Then the projection π2 from W = X ×Y Z to Z is not

a quotient map because the set U = {(a, a)} ⊆ X ×Y Z is open (U = ({a, b} × Z) ∩W)

but U = π−1
2 ({a}) and {a} ⊆ Z is not open.

Proposition 2.2.1. The category of G-spaces is not a Grothendieck topos.

Proof. A Grothendieck topos is regular [3], meaning any pullback of a regular

epimorphism is a regular epimorphism, and as we noted above, regular epimor-

phisms are just the quotient maps. �

Proposition 2.2.2. If a map q : X→ Y has a refinement by a universal quotient map,

then q is itself a universal quotient map.

Proof.

X′ ×Y Z

X′
X ×Y Z Z

X Y
q

//

q1
//

π1

OO
f

OO

g

::

π′1

OO
h ::

q2

44

q′

''

We will use the notation in the diagram above. First note that if a map q : X → Y

has a refinement by a quotient map q′ : X′ → Y then q is a quotient map. This is

because if U is a subset of Y such that q−1(U) is open then g−1(q−1(U)) = (q′)−1(U) is

open, so U is open. Now suppose q′ is a universal quotient map. Then for any map

f : Z → Y the induced map q2 : X′ ×Y Z → Z is a quotient map which refines the

induced map q1 : X ×Y Z → Z, so q1 is a quotient map. Therefore, q is a universal

quotient map. �
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Corollary 2.2.3. Tcan
G is saturated.

Proof. Suppose a covering { fi : Xi → X} has a refinement by a covering {qi :

Yi → X} in Tcan
G . Then {

∐
fi :

∐
Xi → X} has a refinement by the covering

{
∐

qi :
∐

Yi → X} in Tcan
G , which is a universal quotient map, hence

∐
fi is a

universal quotient map, which implies { fi : Xi → X} is a covering in Tcan
G . �

2.2.1.2. The topology Ts
G.

Definition 2.2.4. Let Ts
G be the topology whose coverings are epimorphic (or sur-

jective) families {Ui → U} (i.e. the map Hom(U,V) →
∏

Hom(Ui,V) is injective for

every V).

Proposition 2.2.5. A family {Ui → U} is epimorphic iff U =
⋃

Im(Ui). The topology

Ts
G is strictly coarser than the canonical topology.

Proof. First we show that not every representable presheaf is a sheaf. Let

U = {a, b} with trivial G-action and trivial topology, and let U′ = {a, b} with trivial

G-action and discrete topology. Then {id : U′ → U} is a covering in this topology.

But this covering has no refinement by a canonical covering {Ui → U′} since Tcan
G is

saturated (Corollary 2.2.3) and id : U′ → U is not a quotient map. Now Hom(−,U′)

is not a sheaf since it does not satisfy the covering {id : U′ → U}.

Now suppose {Ui → U} is a family of morphisms and there is an element u ∈ U

which is not in the image of any Ui. Then the whole orbit O of u is not in
⋃

Im(Ui).

Let V = {a, b} with trivial G-action and trivial topology. Define f : U → V by

taking every element to a and g : U → V by taking every element in U r O to a

and every element of O to b (these maps are clearly maps of G-sets, and any map

into a space with a trivial topology is continuous). The images of f and g are the

same in
∏

Hom(Ui,V), but these maps are clearly not the same, so this family is

not surjective. The converse, that if U =
⋃

Im(Ui) then {Ui → U} is a epimorphic

family, is obvious by the usual set-theoretic argument. �
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This proposition provides another explanation for whyCG is not a Grothendieck

topos: in a Grothendieck topos, every epimorphic family is regular [3, Ch. 6,

Theorem 8.13 and Exercise 6.8 (GEN)(e)].

Proposition 2.2.6. The category of sheaves of setsS′(Ts
G) on Ts

G is equivalent to G-set

, hence S(Ts
G) is equivalent to G-mod . In fact, any sheaf is representable by a G-space

with the trivial topology.

Proof. One can use the usual proof that S′(TG) is equivalent to G-set , found

for example in [31, Proposition I.1.3.2.1]. The quasi-inverse functors are X 7→

HomG(−,Xt), where Xt is X with the trivial topology (note HomCG(Y,Xt) is just the

set of G-equivariant maps Y → X), and F 7→ F(G) (where G has its given topology

and F(G) has the usual G-action g · s = F(·g)(s) for s ∈ F(G)). The only item that

needs extra consideration is that the proof uses maps such as G→ X : g 7→ g · x for

some x ∈ X, and these maps are continuous because X is a G-space. �

2.2.1.3. The topology To
G.

Definition 2.2.7. A covering {Ui
fi
−→ U} such that U =

⋃
fi(Ui) and each fi is open

is called an open covering. Let To
G be the topology on CG whose coverings are the open

coverings.

Proposition 2.2.8. To
G is a subcanonical topology, and a covering {Ui

fi
−→ U} is open if

and only if {
∐

Ui

∐
fi

−−→ U} is an open covering.

Proof. A homeomorphism is open, and the composite of two open maps is

open, so to show To
G is a topology we just have to check that open maps are stable

under pullbacks (surjectivity is automatically preserved under pullbacks). Suppose

we have two continuous maps p : U → X, q : V → X with p open. An open set

in a basis for the topology of U ×X V is of the form W = (U′ × V′) ∩ U ×X V =

{(u ∈ U′, v ∈ V′) | p(u) = q(v)}, where U′ ⊆ U,V′ ⊆ V are open subsets. Then the

projection π2 : U ×X V → V of W is {v ∈ V′ | ∃u ∈ U′, p(u) = q(v)} = q−1(p(U′)) ∩ V′,

which is open since p is open, so π2 is open, as desired.
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It is easy to check that a family {Ui
fi
−→ U} is an open covering if and only if

{
∐

Ui → U} is a surjective open map. A surjective open map is always a universal

quotient map, so the topology is subcanonical. �

Example. A map f : X → Y can have a refinement by an open surjective map

without being open. Let X = {a, b, a′} where {a′} is the only nontrivial open subset,

Y = {a, b}with trivial topology. Define f : X→ Y by f (a) = f (a′) = a, f (b) = b. Then

f has a refinement by idX, but f is not open. Thus To
G is not saturated.

2.2.1.4. The Lichtenbaum Topology TL
G.

Definition 2.2.9. A Lichtenbaum covering is a family of morphisms {Xi
fi
−→ X} in

CG such that for all x ∈ X there is a neighborhood U of x, an index i, and a continuous (not

necessarily G-equivariant) map s : U→ Xi with fi ◦ s = idU.

The Lichtenbaum topology [17, p. 659] TL
G on CG is the one whose coverings are the

Lichtenbaum coverings.

Proposition 2.2.10. TL
G is a subcanonical topology, and a family {Xi

fi
−→ X} is a

Lichtenbaum covering if and only if {
∐

Xi

∐
fi

−−→ X} is a Lichtenbaum covering.

Proof. This is indeed a topology and is shown in [17] to be subcanonical. To

see that {Xi
fi
−→ U}i∈I is a Lichtenbaum covering if and only if

∐
Xi

∐
fi

−−→ U is a

Lichtenbaum covering, note that if x ∈ U has a neighborhood Ux and s : Ux → Xi is

continuous with fi ◦ s = id then we can just extend s : Ux → Xi →
∐

Xi and verify

(
∐

fi) ◦ s = id. If there is a local section s : Ux →
∐

Xi with s(x) ∈ Xi, then s−1(Xi) is

a neighborhood of x on which (
∐

fi) ◦ s = id, so we can restrict the target of s to Xi

and the domain to s−1(Xi); then fi ◦ s|s−1(Xi) = id. �

Proposition 2.2.11. TL
G is saturated.

Proof. Suppose { fi : Xi → X} has a refinement by a Lichtenbaum covering

{g j : Y j → X}. Then for each j there is a map h j : Y j → Xi( j) such that fi( j) ◦ h j = g j.

For each x ∈ X there is a neighborhood U of x and a continuous map s : U→ Y j for
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some j such that g j ◦ s = idU. Then h j ◦ s is a continuous map U → Xi( j) such that

fi( j) ◦ (h j ◦ s) = idU, so { fi : Xi → X} is a Lichtenbaum covering. �

2.2.1.5. Other Topologies.

Definition 2.2.12. Let Tlh
G be the topology whose coverings are epimorphic families

{Ui
fi
−→ U} of local homeomorphisms, i.e. U =

⋃
fi(Ui) and for each i and each x ∈ Ui there

is a neighborhood V of x in Ui such that fi|V is a homeomorphism.

It is easy to verify that a family {Ui
fi
−→ U} is a covering in Tlh

G if and only if

{
∐

Ui

∐
fi

−−→ U} is, and that Tlh
G is a subcanonical topology. This topology resembles

the étale topology.

Though we will not be working much with the following topology, we want to

suggest it as another topology which may be used to produce a viable cohomology

theory for G.

Definition 2.2.13. Let Toi
G be the topology whose coverings are epimorphic families of

open continuous injective maps, i.e. open embeddings.

If G = 1, Toi
G and Tlh

G are equivalent [33, Example 2.50], and each is equivalent to

TG [8, Lemma 1].

Proposition 2.2.14. Let A be an abelian group. For any of the topologies TG,Ts
G,T

can
G ,

To
G,T

L
G,T

lh
G , and Toi

G, the constant sheaf A is the sheaf represented by Ad, where Ad = A with

discrete topology and trivial G-action.

Proof. Let P be the constant presheaf A on TG. The map P → Hom(−,Ad) that

takes a ∈ P(U) = A to the constant map with value a is an injection of presheaves,

hence induces an injection of sheaves. To see that it is locally surjective, suppose

s ∈ Hom(U,Ad). For each a ∈ A, let Ua = s−1(a) ⊆ U. Since each Ua is a G-

space which is an open subspace of U, the collection {Ua ↪→ U} is a covering

in all of the topologies listed. Since s is constant on each Ua, this implies the map

P→ Hom(−,Ad) is locally surjective, hence induces an epimorphism of the sheaves,
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in each of these topologies.

�

2.2.2. Comparison of the Topologies on CG.

Proposition 2.2.15. For any topological group G (even G = 1), we have Toi
G ≺ Tlh

G ≺

TL
G � To

G � Tcan
G � Ts

G.

Therefore, S(Toi
G) ⊇ S(Tlh

G ) ⊇ S(TL
G) % S(To

G) % S(Tcan
G ) % S(Ts

G). Also, Tc
G � TL

G, so

S(Tc
G) % S(TL

G).

Proof. An open injective map is a local homeomorphism, and each local home-

omorphism has local sections, hence Toi
G ≺ Tlh

G ≺ TL
G, and we have already shown To

G

is subcanonical, i.e. To
G ≺ Tcan

G , and Tcan
G � Ts

G. Obviously, every covering in Tc
G is a

covering in TL
G. Now we show that every covering in TL

G has a refinement in To
G. Let

U = {Xi
fi
−→ X} be a Lichtenbaum covering. For every x ∈ X, let Ux be an open set in

X such that there is a (continuous) section sx : Ux → Xi(x), so that fi(x) ◦ sx = idUx . We

claim the family {G × Ux
ax
−→ X} is an open cover which refines U, where the map

ax : G ×Ux → X is given by (g,u) 7→ g · u. First note that each map is indeed open,

since for any open subsets V ⊆ Ux,W ⊆ G, the image of V ×W is
⋃

g∈W g ·V, which

is open. Of course, since X =
⋃

Ux, this family is epimorphic. This family is a re-

finement ofU because for any x we define the map Ux×G→ Xi(x) : (u, g) 7→ g · sx(u)

and note fi(x)(g · sx(u)) = g · fi(x)(sx(u)) = g · u = ax(u, g).

For our examples we will consider G-spaces with trivial G-action, so we may as

well be working in the category of topological spaces with continuous maps. An

example of an open covering which does not have a refinement by a local section

covering is the map q : X = SpecZ → Y in the example in Section 2.1.3. Clearly,

q is open, continuous, and surjective, but if it has a refinement by a Lichtenbaum

covering then it is itself a Lichtenbaum covering (by Proposition 2.2.11), which is

clearly not true.

An example of a canonical covering which does not have a refinement by an

open covering is {U1
f
−→ U}, where U1 = {a, b, b′}with {b} and {a, b} the only nontrivial

64



open sets, U = {a, b} with trivial topology, and f (a) = a, f (b) = f (b′) = b. Clearly, f

is a quotient map; let us see why it is a universal quotient map. Let V
g
−→ U be a

continuous map. Then V ×U U1 = g−1(a) × {a} ∪ g−1(b) × {b, b′}. Suppose W ⊆ V is a

subset such that the preimage under f̄ : V ×U U1 → V is open. We need to show W

is open.

Note f̄ −1(W) = (g−1(a)∩W)× {a} ∪ (g−1(b)∩W)× {b, b′}. Now g−1(b)∩W × {b, b′}

must be covered by sets of the form (V′ ×U′) ∩ V ×U U1 where V′ ⊆ V,U′ ⊆ U1 are

open subsets. This means f̄ −1(W) is open if and only if (1) every point (w, a) with

w ∈ W ∩ g−1(a) is contained in an open set (V1 × {a, b}) ∩ (V ×U U1) ⊆ f̄ −1(W) or an

open set (V2×U1)∩(V×U U1) ⊆ f̄ −1(W) and (2) every point (w, b′) with w ∈W∩g−1(b)

is contained in a set (V3 × U1) ∩ (V ×U U1), because under these conditions every

point (w, b) with w ∈ W ∩ g−1(b) is already covered by open sets. In turn (taking

unions), this is equivalent to f̄ −1(W) being the union of (V1 × {a, b}) ∩ (V ×U U1),

(V2×U1)∩(V×U U1), and (V3×U1)∩(V×U U1) for some open sets V1,V2,V3 ⊆ V such

that (1) (V1 × {a, b})∩ (V×U U1) = ((V1 ∩ g−1(a))× {a})∪ ((V1 ∩ g−1(b))× {b}) ⊆ f̄ −1(W),

which means V1 ⊆ W, (2) (V2 × U1) ∩ (V ×U U1) = ((V2 ∩ g−1(a)) × {a}) ∪ ((V2 ∩

g−1(b)) × {b, b′}) ⊆ f̄ −1(W), which means V2 ⊆ W, and (3) (V3 × U1) ∩ (V ×U U1) =

((V3 ∩ g−1(a)) × {a}) ∪ ((V3 ∩ g−1(b)) × {b, b′}) ⊆ f̄ −1(W), which means V3 ⊆ W. This

means W = V1∪V2∪V3 is a union of open sets, hence is open. Thus, f is a universal

quotient map.

To show that {U1
f
−→ U} does not have a refinement by an open cover, suppose

{Vi → U} is such a refinement. Then {
∐

Vi → U} is also such a refinement and

we may as well assume we have a refinement {V
g
−→ U}. By assumption, there is

a continuous map h : V → U1 such that f ◦ h = g. But then h−1(b) is open. If

h−1(b) , ∅, then g(h−1(b)) = {b} is open: a contradiction. This means h−1(b) = ∅, so

h−1(a) = h−1({a, b}) is open and g(h−1(a)) = {a} is open: a contradiction (we cannot

have h−1(a) = ∅ since h−1({a}) = g−1({a}) and g is onto).

Finally, here is an example of a covering in Toi
G (hence in TG) that does not have a

refinement in Tc
G: let A = {a},B = {b},C = {a, b}, where C is discrete. The inclusions
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A ↪→ B,B ↪→ C are open imbeddings, but there is no refinement of {A ↪→ B,B ↪→ C}

in Tc
G since we would have an epimorphism that factors through a map which is

not an epimorphism, which is impossible. �

There are examples of coverings in Tc
G which are not open coverings but can

be refined by open coverings: consider, for example {X
f
−→ Y}, where X = {a, a′, b}

with {a′} the only nontrivial open set, Y = {a, b} with the trivial topology, and

f (a) = f (a′) = a, f (b) = b. Clearly, the map s : a 7→ a, b 7→ b is a section, but the

image of the open set {a′} is not open.

Proposition 2.2.16. The topology Tlh
G is equivalent to TL

G if and only if G has the

discrete topology.

Proof. If G has any topology other than the discrete one, then the covering

U = {G → pt} is in TL
G, but it does not have a refinement that is in Tlh

G : if X → pt

is any map in a refinement ofU, as a G-set X must be a disjoint union of orbits of

the form G, and by Lemma 1.3.2 each orbit must have a subspace topology that is

no finer than than the original topology of G, which is not discrete. This means

X→ pt cannot be a local homeomorphism, because no point of X can be open.

If G has the discrete topology andU = {Xi
fi
−→ X} is a Lichtenbaum covering then

for every x ∈ X there is a neighborhood Ux and a continuous section sx : Ux → Xi(x).

The family {G × Ux
a
−→ X}x∈X, where a(g,u) = g · u, is a refinement of U and a

covering in Tlh
G . Indeed, a is a local homeomorphism because the point (g,u) has

the neighborhood {g} ×Ux, which maps homeomorphically onto g ·Ux by a. �

Proposition 2.2.17. If G , 1 has the discrete topology, then Toi
G � Tlh

G . In general, if

G has a subgroup H , G such that (1) G = H ×H′ for some subgroup H′ of G and (2) H

contains no proper open subgroup, then Toi
G � Tlh

G .

Proof. The covering {G
π1
−→ H}, where π1(h, h′) = h for h ∈ H, h′ ∈ H′, does not

have a refinement by a family of (continuous) open injective maps: any such map

would have to map onto all of H, hence be an isomorphism, and there is no section
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H→ G that is G-equivariant unless H′ = 1 (in which case H = G, contradicting the

hypothesis of the proposition). But π1 : G→ H is a local homeomorphism: for any

g = (h, h′) ∈ G, the set gH = {(h, h′) | h ∈ H} is open and maps homeomorphically

onto H. If G is discrete, we can take H = {e}. �

One nontrivial example where the above proposition applies is when G = Z/6Z,

with the topology where (2) and 1+(2) are the only nontrivial open sets and H = (2).

Corollary 2.2.18. For any group G , 1, Toi
G � TL

G.

2.2.3. Čech Cohomology. The following result is easy, but is important enough

to be called a theorem. It is only a slight generalization of [17, Prop. 1.4]:

Theorem 2.2.19. Suppose {G→ pt} is a covering in a subcanonical topology T on CG

(which is the case for all the subcanonical topologies considered above) and A is any topo-

logical G-module. Let Ã be the sheaf represented by A. The Čech cohomology Ȟn(T, pt, Ã)

is canonically isomorphic to Hn
c (G,A).

Proof. The Čech cohomology cochains Čn(pt, Ã) are defined as the direct limit

of
∏

Ã(Ui0 ×pt · · · ×pt Uin) over all coverings {Ui → pt} of pt. But the covering

{G → pt} is cofinal in all coverings because for any G-space X and any x ∈ X

the map G → X : g 7→ g · x is continuous. That means Čn(pt, Ã) = Hom(Gn+1,A)

is the set of homogeneous cochains in the continuous cochain theory. Since the

coboundary morphisms are the same, the two cohomology theories coincide by

Theorem 2.1.1. �

Corollary 2.2.20. Suppose {G → pt} is a covering in a subcanonical topology T on

CG. Then H1(T, pt, Ã) � H1
c (G,A) for any topological G-module A.

Proof. H1(T, pt, Ã) � Ȟ1(T, pt, Ã). �

2.2.4. Coverings with Single Maps.

Definition 2.2.21. Let T be a topology on a categoryCwhich has arbitrary coproducts.

We define T1 to be the topology whose coverings are single-morphism coverings in T.
67



It is easy to check T1 is a topology if T is. Throughout this section, we will use

the following properties of a Grothendieck topology on C:

(C) T is saturated and for any set {Xi}i∈I of objects in C, the family of natural

inclusions {Xi ↪→
∐

Xi}i∈I is a covering.

(C’) { fi : Xi → X} is a covering in T if and only if {
∐

fi :
∐

Xi → X} is a covering

in T.

For example, TL
G and Tcan

G satisfy (C); and TL
G,T

o
G,T

lh
G ,T

can
G all satisfy (C’). Note

that if T satisfies (C’) then for any family {Xi} of objects of C, {id :
∐

Xi →
∐

Xi} is

a covering by definition of a topology, which means {Xi ↪→
∐

Xi} is a covering in

T. Therefore, if T satisfies (C’) then its saturation satisfies (C).

There is an obvious morphism of topologies α : T1
→ T which is the identity on

C. First of all, if T satisfies (C) or (C’) then the Čech cohomologies are the same:

Lemma 2.2.22. Suppose T satisfies (C) or (C’). Then for all n ≥ 0, all sheaves F on T,

and all X in C, we have Ȟn(T,X,F) � Ȟn(T1,X, α∗F).

Proof. Note F and α∗F are the same presheaf, and by definition any T1 covering

is a T covering so there is a natural map φn from Ȟn(T1,X,F) to Ȟn(T,X,F). Because

F is a sheaf on T, which satisfies (C) or (C’), for any family {Xi} of objects in

C, {Xi ↪→
∐

Xi} is a covering, so
∏

F(Xi) � F(
∐

Xi). This means for any covering

{Xi → X}i∈I in T, the corresponding Čech complex (Čn({Xi → X},F))∞n=0 is isomorphic

to the Čech complex (Čn({
∐

Xi → X},F))∞n=0. Now {
∐

Xi → X} is a covering in T1:

this is obvious if T satisfies (C’), and if (T) satisfies (C) then this is because the

covering {
∐

Xi → X} has a refinement in T, so since T is saturated, {
∐

Xi → X} is

in T, hence also in T1. Therefore, the contribution to the direct limit

Ȟn(T,X,F) = lim
−−→
{Xi→X}

Ȟn({Xi → X},F)
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from the covering {Xi → X} also exists in the direct limit

Ȟn(T1,X,F) = lim
−−→
{Y→X}

Ȟn({Y→ X},F)

This implies φn is an isomorphism. �

Theorem 2.2.23. Suppose T satisfies (C) or (C’). Then α∗ is exact, so for any sheaf F

on T and any X in C we have Hn(T1,X, α∗F) � Hn(T,X,F).

Proof. There are two proofs. Proof 1. We show R1α∗F = 0 for all sheaves F on T.

R1α∗F is the sheaf associated to the presheaf P : X 7→ H1(T, αX,F) = H1(T,X,F) on

T1. But H1(T,X,F) � Ȟ1(T,X,F) � Ȟ1(T1,X,F) � H1(T1,X,F), so this is precisely the

sheaf R1(idT1)∗F = 0.

Proof 2. We show α∗ is exact directly. Suppose we have an epimorphism of

sheaves η : F1 → F2 on T. We want to showα∗η : α∗F1 → α∗F2 is locally surjective. So

take a section s ∈ α∗F2(X) = F2(X). Since η is locally surjective, there exist a covering

{ fi : Xi → X} in T and sections si ∈ F1(Xi) such that s|Xi = η(Xi)(si). But since T

satisfies (C) or (C’),
∏

F2(Xi) � F2(
∐

Xi) and (s|Xi) ∈
∏

F2(Xi) corresponds to s|
∐

Xi.

Also, (si) ∈
∏

F1(Xi) corresponds to some element t ∈ F1(
∐

Xi). Because T satisfies

(C) or (C’), {
∐

fi :
∐

Xi → X} must be a covering in T1, and η(
∐

Xi)(t) = s|
∐

Xi.

Thus, α∗η is an epimorphism. �

Example. Recall that TG is the usual topology on the category of G-sets whose

coverings are surjective families {Xi → X}. Let T1
G be the restriction of TG to

coverings which consist of single morphisms. Then, by the proof of Proposition

2.2.14, the constant sheaf Z on TG is the sheaf Hom(−,Z) represented by Z with

trivial G-action, but the constant sheaf Z on T1
G is the constant presheaf Z by

Proposition 2.1.22. The cohomology of the first is

Hn(T1
G, pt,Hom(−,Z)) � Hn(TG, pt,Hom(−,Z)) � Hn(G,Z),

the usual group cohomology, by Theorem 2.2.23. The cohomology of the second

is given by H0(T1
G, pt,Z) = Z and Hn(T1

G, pt,Z) = 0 for n > 1 by the proof of

Proposition 2.1.23.
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2.2.5. The Use of Pointed G-Spaces.

Definition 2.2.24. Let CG,∗ be the category of pointed G-spaces (X, x) (where X is

a G-space and x ∈ X) with morphisms f : (X, x) → (Y, y) that are continuous G-maps

satisfying f (x) = y.

Definition 2.2.25. Let T•G be a topology on CG. We define T•G,∗ to be the topology on

CG,∗ whose coverings are single maps { f : (X, x)→ (Y, y)} which are coverings in T•G.

Note that there is a forgetful functor g : CG,∗ → CG which induces a morphism of

topologies T•G,∗ → T•,1G , where T•,1G is the restriction of T•G to coverings which consist

of single morphisms, since g takes coverings to coverings. Consider the following

property of a topology T•G on CG:

(S) For any covering { f : X→ Y}, f is surjective as a map of sets.

Theorem 2.2.26. Let T•G be a topology on CG satisfying (S). Then for any sheaf F on

T∗G,1, we have Hn(T•G,∗, pt, g∗F) � Hn(T•,1G , pt,F).

Proof. Since a covering in T•,1G is a surjective map, for any pointed G-space

(X, x) and any covering { f : Y → X} in T•,1G , there exists y ∈ Y with f (y) = x, so

{ f : (Y, y)→ (X, x)} is a covering in T•G,∗ which maps onto the covering { f : Y→ X}.

Therefore, the theorem follows by Lemma 1.1.6. �

2.2.6. Comparison of Hn
ss(G,A) to the Cochain Theories. In this section we

show how Grothendieck topologies enable us to compare the semisimplicial theory

Hn
ss(G,A) of Wigner, in the form Hn(TL

G, pt, Ã), to Moore’s measurable cochain theory

Hn
m(G,A), in the form Hn(Tm

G , pt, Ã). The comparison will hold under only the

assumption that G is second countable.

Lemma 2.2.27. Suppose { f : X → Y} is a Lichtenbaum covering. If Y is Lindelöf3,

then there is a global measurable section s : Y→ X.

3A topological space is Lindelöf if any open covering has a countable subcovering.
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Proof. The covering {Uy}y∈Y has a countable subcovering since Y is Lindelöf,

say {Uyk}
∞

k=1. Let sk be the corresponding section sk : Uyk → X, let U1 = Uy1 , and

let Ui = Uyi r
⋃i−1

k=1 Uyk . Clearly, {Uk}
∞

k=1 is a disjoint covering for Y and each Uk is

measurable. Define s by s(y) = sk(y) if y ∈ Uk. Then for any measurable set V in

X, s−1(V) =
⋃
∞

k=1(s−1
k (V) ∩ Uk) is the countable union of measurable sets, hence is

measurable. �

Let TL,1
G,sc be the topology on the category of second-countable G-spaces whose

coverings are Lichtenbaum coverings consisting of single maps { f : X → Y}. Note

that the final object pt and fibered products exist in the category of second-countable

spaces. This is because subspaces of second countable spaces are second count-

able, and finite (even countable) products of second countable spaces are second

countable. We have an obvious map of topologies i : TL,1
G,sc → TL,1

G which is just the

embedding of categories.

Proposition 2.2.28. Suppose G is second countable. For any sheaf F on TL,1
G and

any second countable G-space X, we have canonical isomorphisms Hn(TL,1
G,sc,X, i∗F) �

Hn(TL,1
G ,X,F) for all n.

Proof. By Lemma 1.1.6, it is enough to show that any covering { f : X → Y} of

a second countable G-space Y by an arbitrary G-space X is refinable by a covering

{U → Y} with U second countable. For every point y ∈ Y there is a neighborhood

Uy of Y and a section sy : Uy → X. Note that Uy is second countable, and so

is G × Uy (where Uy has trivial G-action). We have the two continuous G-maps

ay : G×Uy → Y : (g, x) 7→ g ·x and ty : G×Uy → X : (g, x) 7→ g · sy(x), and f ◦ ty = ay.

Since any second countable space is Lindelöf, there is a countable subset {yi}
∞

i=1 of

y’s such that Y =
⋃
∞

i=1 Uyi . This implies U =
∐
∞

i=1 Uyi is a second countable space.

The induced maps
∐

ayi : G × U → Y,
∐

tyi : G × U → X are still continuous and

f ◦ (
∐

tyi) =
∐

ayi . Furthermore, {G × U
∐

ayi
−−−→ Y} is a covering in TL,1

G since for any

y ∈ Y there exists i with y ∈ Uyi and a section s : Uyi → G × U : x 7→ (e, x). Thus,

{G ×U
∐

ayi
−−−→ Y} is a refinement of { f : X→ Y}. �
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Corollary 2.2.29. Let G be a second countable group and A any topological G-module.

Then HomCG(−,A) is a sheaf on TL,1
G,sc and

Hn(TL,1
G,sc, pt,HomCG(−,A)) � Hn(TL,1

G , pt, Ã)

Note that, strictly speaking, HomCG(−,A) is not in general the sheaf represented

by A on TL,1
G,sc because A is not necessarily second countable, hence not an object in

Cat(TL,1
G,sc), but HomCG(−,A) = i∗Ã is still a sheaf on TL,1

G,sc.

Proposition 2.2.30. Let G be second countable. Then there is a morphism of topologies

j : TL,1
G,sc → Tm

G such that for any sheaf F on Tm
G and any G-space X, Hn(TL,1

G,sc,X, j∗F) �

Hn(Tm
G ,X,F) for all n.

Proof. The morphism j takes a G-space to itself (note continuous maps are

measurable). Note j is a morphism of topologies because fibered products are the

same in both categories and a covering { f : X → Y} in TL,1
G,sc is a covering in Tm

G by

Lemma 2.2.27. As shown in Remark 1 in Section 2.1.2, any covering { f : X→ Y} in

Tm
G has a refinement by the covering {G×Ytriv → Y}, which has a global continuous

section hence is a covering in TL,1
G,sc. Thus the proposition holds by Lemma 1.1.6. �

Corollary 2.2.31. Let G be a second countable group and A any topological G-module.

Then HomCm
G
(−,A) is a sheaf on TL,1

G,sc and Hn(TL,1
G,sc, pt,HomCm

G
(−,A)) � Hn(Tm

G , pt, Ã) �

Hn
m(G,A) for all n.

Theorem 2.2.32. Let G be a second countable group and A any topological G-module.

There exist canonical maps φn : Hn
ss(G,A)→ Hn

m(G,A) for all n.

Proof. First we use Lichtenbaum’s Theorem that Hn
ss(G,A) � Hn(TL

G, pt, Ã).

Next, by Proposition 2.2.28 and Theorem 2.2.23, we have

Hn(TL
G, pt, Ã) � Hn(TL,1

G,sc, pt,HomCG(−,A))
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(we use the notation HomCG(−,A) because technically, A may not be an object in the

category underlying TL,1
G,sc). Now Proposition 2.2.30 implies HomCm

G
(−,A) is a sheaf

on TL,1
G,sc and Hn(TL,1

G,sc, pt,HomCm
G
(−,A)) � Hn(Tm

G , pt, Ã) � Hn
m(G,A). Now the natural

injection of sheaves HomCG(−,A) ↪→ HomCm
G
(−,A) on TL,1

G,sc induces the maps φn on

cohomology. �

There is even a long exact sequence connecting the cohomology groups Hn
ss(G,A)

and Hn
m(G,A):

· · · → Hn
ss(G,A)→ Hn

m(G,A)→ Hn
Q(G,A)→ Hn+1

ss (G,A)→ · · ·

where Hn
Q(G,A) = Hn(TL,1

G,sc, pt,Q) and Q is the sheaf HomCm
G
(−,A)/HomCG(−,A).

The same reasoning could be applied to any category of Lindelöf spaces, not

just the second countable spaces, as long as the category has fibered products.

Let TL
G,sc,∗ be the topology on the category of pointed second countable G-spaces

whose coverings are those in TL
G,∗, i.e. Lichtenbaum coverings consisting of single

maps { f : (X, x) → (Y, y)} such that there is a section s of f on a neigborhood U

of y with s(y) = x. Note that the final object pt and fibered products exist in the

underlying category. There is an obvious morphism t : TL
G,sc,∗ → TL,1

G,sc forgetting the

base point x in (X, x). By the proof of Theorem 2.2.26, we have

Proposition 2.2.33. Hn(TL
G,sc,∗, (X, x), t∗F) = Hn(TL,1

G,sc,X,F) for any sheaf F on TL,1
G,sc

and any second countable pointed G-space (X, x).

Corollary 2.2.34. Let G be a second countable group and A a topological G-module.

Then HomCG(−,A) is a sheaf on TL
G,sc,∗ and

Hn(TL
G,sc,∗, pt,HomCG(−,A)) � Hn(TL,1

G,sc, pt, Ã) � Hn(TL,1
G , pt, Ã).

Proposition 2.2.35. Let G be second countable. Then there is a morphism of topologies

j : TL
G,sc,∗ → Tlcm

G such that for any sheaf F on Tlcm
G and any pointed G-space (X, x),

Hn(TL
G,sc,∗, (X, x), j∗F) � Hn(Tlcm

G , (X, x),F) for all n.
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Proof. The proof is the same as that of Proposition 2.2.30. �

Recall MapG,lcm((X, x),A) is the set of measurable G-maps from X to A that are

continuous in a neighborhood of x.

Corollary 2.2.36. Let G be a second countable group and A a topological G-module.

Then MapG,lcm(−,A) is a sheaf on TL
G,sc,∗ and

Hn(TL
G,sc,∗, pt,MapG,lcm(−,A)) � Hn(Tlcm

G , pt,MapG,lcm(−,A)) � Hn
lcm(G,A)

for all n.

Theorem 2.2.37. Let G be a second countable group A a topological G-module. There

exist canonical maps φn : Hn
ss(G,A)→ Hn

lcm(G,A) for all n.

Proof. First we use Lichtenbaum’s Theorem that Hn
ss(G,A) � Hn(TL

G, pt, Ã).

Next, by Proposition 2.2.28 and Theorem 2.2.23, we have

Hn(TL
G, pt, Ã) � Hn(TL,1

G,sc, pt,HomCG(−,A)).

Corollary 2.2.34 implies

Hn(TL,1
G,sc, pt,HomCG(−,A)) � Hn(TL

G,sc,∗, pt,HomCG(g(−),A)),

where g(X, x) = X. In total, so far we have

Hn
ss(G,A) � Hn(TL

G,sc,∗, pt,HomCG(g(−),A)).

Now Corollary 2.2.36 implies MapG,lcm(−,A) is a sheaf on TL
G,sc,∗ and

Hn(TL
G,sc,∗, pt,MapG,lcm(−,A)) � Hn(Tlcm

G , pt,MapG,lcm(−,A)) � Hn
lcm(G,A).

Now the natural injection of sheaves HomCG(g(−),A) ↪→ MapG,lcm(−,A) on TL
G,sc,∗

induces the maps φn on cohomology. �

Theorem 2.2.38. Let G be a second countable group A a topological G-module. There

exist canonical maps φn : Hn
ss(G,A)→ Hn

lc(G,A) for all n.

Proof. The proof is the same - just change “lcm” into “lc” in Proposition 2.2.35,

Corollary 2.2.36, and Theorem 2.2.37. �
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2.3. Associated Short Exact Sequences

In this section we first discuss different Yoneda embeddings of the categoryMG

of topological G-modules in various categories of sheaves; abusing notation, we

denote them all by y. Then we explain how these embeddings enable us to connect

these categories of sheaves to short exact sequence of topological G-modules which

give long exact sequences in the associated cohomology theories.

If T is a subcanonical topology on CG, there is a Yoneda embedding y :MG →

S(T) : A 7→ Ã, which is fully faithful. For a Grothendieck topology T on CG,∗, such

an embedding y : MG → S(T) also exists; here y(A) is represented by (A, 0). The

Yoneda embedding is still fully faithful in this case because any morphism of two

representable sheaves comes from a unique morphism of topological G-modules

A→ B, and such morphisms do take 0 to 0. In both cases, the Yoneda embedding

is left exact (and in particular, exact in the middle).

Definition 2.3.1. For either of the above situations, let T be the respective topology

and S = S(T) be the category of sheaves. Define a class ST of morphisms in MG by

ST = y#(Mor(S)), where y# is the Yoneda pullback discussed in Section 1.2.3.

By definition, ST consists of the proper morphisms φ : A → B of topological

G-modules such that the exact sequences

0→ kerφ→ A→ Imφ→ 0

and

0→ Imφ→ B→ cokerφ→ 0

are sent to exact sequences in S. Since y is left-exact, this amounts to saying

φ ∈ ST ⇐⇒ φ is proper, y(A)→ y(Imφ) is an epimorphism and y(B)→ y(cokerφ)

is an epimorphism. Note that by Theorem 1.2.9, (MG,ST) is a quasi-abelian S-category.

The following proposition, together with Proposition 1.2.1 of Section 1.2.1, gives

an explicit description of ST in terms of the coverings in T.
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Proposition 2.3.2. The class of epimorphisms in ST is precisely the class of proper

epimorphisms φ : A→ B such that there is a covering {Ui
fi
−→ B}i∈I in T refining {A

φ
−→ B}

(where the Ui,A, and B may be pointed spaces, depending on the category underlying T).

Proof. If φ is a proper epimorphism then cokerφ = 0 so y(B) → y(cokerφ)

is automatically an epimorphism; we have to show that if {φ : A → B} has a

refinement, then y(A)→ y(Imφ) = y(B), which is the map y(φ), is an epimorphism

in S. By Lemma 1.1.5, it is enough to show y(φ) is locally surjective. First suppose

we are working with a topology T on CG. If there is a refinement {Ui
fi
−→ B} of

{φ : A→ B}, then for each i ∈ I there is a map gi : Ui → A such that φ ◦ gi = fi (see

the diagram below). For any map f : X → B, f ◦ πi = φ ◦ gi ◦ ρi, which means the

restriction of the element f ∈ B̃(X) to Ui ×B X is the image of gi ◦ ρi ∈ Ã(Ui ×B X)

under y(φ). Since {Ui ×B X
πi
−→ X} is a covering in T (being the pullback of the

covering {Ui
fi
−→ B} by f : X→ B), this implies y(φ) is locally surjective.

Ui ×B X

Ui

A B

X

φ

//

fi

��
gi
��

ρi

��

πi

��

f

��

If, instead, we are working with a topology T on CG,∗ and we have a refinement

{(Ui,ui)
fi
−→ B} of {φ : A → B} then for any map f : (X, x) → (B, 0) we can form the

fibered products (Ui ×B X, (ui, x)) and the same argument works.

Conversely, if φ : A → B is an epimorphism in ST then, by definition of ST, φ

is proper and y(A → Im(φ)) = y(φ) is an epimorphism, hence is locally surjective,

so idB is locally in the image of y(A). This means there exist a covering {Ui
fi
−→ B}i∈I

and maps gi : Ui → A such that φ ◦ gi = fi, so {Ui → B} is a refinement of {A
φ
−→ B}

(the Ui,A, and B are pointed if we are working with a topology on CG,∗). �

Now we can prove that the Yoneda functors preserve and reflect exactness in

ST:
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Proposition 2.3.3. Suppose β : B → C is a proper epimorphism. Then the following

are equivalent:

(1) The sequence 0→ A α
−→ B

β
−→ C→ 0 inMG is exact and α, β ∈ ST.

(2) The sequence 0→ y(A)
y(α)
−−→ y(B)

y(β)
−−→ y(C)→ 0 is exact in S.

Proof. (1)⇒ (2): The Yoneda embedding y is left-exact, and if β is in ST, then

y(B→ Im(β)) = y(β) is an epimorphism. (2)⇒ (1): For any map f : X → B (where

X is a topological G-module) with β ◦ f = 0, there is a unique map g : X → A

such that α ◦ g = f , so α = ker(β), hence the sequence inMG is exact. Now β ∈ ST

since y(B → Im(β)) = y(β) is an epimorphism. Finally, α = ker β is also in ST since

(MG,ST) is an S-category. �

Corollary 2.3.4. For any exact sequence 0→ A α
−→ B

β
−→ C→ 0 in (MG,ST) there is

a long exact sequence on cohomology

0→ H0(T, pt, Ã)→ H0(T, pt, B̃)→ H0(T, pt, C̃)→ H1(T, pt, Ã)→ · · ·

Proof. By Proposition 2.3.3 we have a short exact sequence of sheaves, hence

by the theory of derived functors, a long exact sequence in cohomology. �

In the following table we describe the classes ST for various topologies T on CG

andCG,∗ by describing the corresponding classes of proper epimorphisms e : A→ B

in ST.

Topology T Epimorphisms e : A→ B in ST

Tc
G e has a global continuous section

TL
G and TL,1

G e has local sections

To
G and Tcan

G all e

For the proof, by Proposition 2.3.2 we just have to show that the epimorphisms

which have a refinement in T are precisely the ones listed. For Tc
G, any epimorphism

which has a continuous section is itself a covering. Conversely, if {e : A → B} has

a refinement by a cover {X
f
−→ B}, then f has a continuous section s : B → X
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with f ◦ s = idB. Since f factors through A, say f = e ◦ g for some continuous

map g : X → A, g ◦ s is a continuous section of e. The proof for TL
G and TL,1

G is

also the same, noting that if {e : A → B} has a refinement by a cover {Ui → B}

then it has a refinement by the cover {
∐

Ui → B}. For To
G and Tcan

G , note that any

proper epimorphism is an open surjective continuous map, hence a covering in

both topologies.
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CHAPTER 3

Extn
(MG,S)(Z,A) and Cochain Theories

This chapter is devoted to discussing the two most basic cochain theories, the

continuous cochain theory and the measurable cochain theory, and verifying some

of Wigner’s results in [35].

3.1. Continuous Cochain Cohomology

This section is a reworking of David Wigner’s section on the continuous cochain

theory[35, p. 86], which was defined in Section 2.1.1.1.

In this section, let S be the class of morphisms such that the epimorphisms

in S are proper and have a continuous section (see Section 1.2.3). A short exact

sequence in S is of the form 0 → A α
−→ B

β
−→ C → 0 such that there is a continuous

map γ : C→ B with β ◦ γ = idC. We claim that such a short exact sequence gives a

long exact sequence on cohomology

0→ H0
c (G,A)→ H0

c (G,B)→ H0
c (G,C)→ H1

c (G,A)→ · · ·

First, the sequence 0 → Cn(G,A) → Cn(G,B) → Cn(G,C) → 0 is exact: the map

Cn(G,A) → Cn(G,B) is obviously injective, and for a map f ∈ Cn(G,C), the map

γ◦ f ∈ Cn(G,B) maps to f , so the map Cn(G,B)→ Cn(G,C) is surjective. If we have a

map f : Gn
→ B such that β ◦ f = 0 then there exists a unique map h : Gn

→ A such

that α ◦ h = f . To show h is continuous, suppose we have an open set U ⊆ A. Then,

since α is proper, α(U) = U′ ∩ α(A) for some open set U′ ⊆ B, and h−1(U) = f −1(U′)

is open. Now the sequence on cohomology is exact by the Snake Lemma.

Let F(G,A) = C1(G,A), made into a G-module by (g · f )(x) = f (xg), ( f1 + f2)(x) =

f1(x) + f2(x), and given the compact-open topology, i.e. a sub-basis for the topology

on F(G,A) is the set of all subsets N(K,U) = { f ∈ F(G,A) | f (K) ⊆ U} where K is a

compact subset of G and U is an open subset of A.
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To show that F(G,A) is a topological G-module, we need to assume that G

is locally compact, which is what we will do throughout the rest of this section.

Since a topological group is regular (see Section 1.3.1), this implies that for every

neighborhood U of x ∈ G there is a compact set K containing a neighborhood

of x with K ⊆ U (by local compactness, there is a compact set K1 containing a

neighborhood U1 of x; by regularity, there is an open set V with x ∈ V ⊆ V̄ ⊆ U1∩U;

V̄ is a closed subspace of the compact space K1, so K := V̄ is compact).

To show that the action of G is continuous, suppose g · f ∈ N(K,U), i.e. f (Kg) ⊆

U. For every x ∈ K there is an open set Px 3 x and an open set Qx 3 g with

Px · Qx ⊆ f −1(U). These Px cover K, so we can choose finitely many of them, say

P1, . . . ,Pn, that cover K. The intersection Q of the corresponding Qx’s contains an

open set V 3 g which is inside an open set K′, which is itself inside Q. Then KK′ is

compact (being the image of K×K′ under G×G→ G), N(KK′,U) is a neighborhood

of f (for any k ∈ K, k′ ∈ K′ ⊆ Q we have f (kk′) ∈ U since k ∈ Pi for some i and

f (Pi ·Qi) ⊆ U), and V is a neighborhood of g such that V ·N(KK′,U) ⊆ N(K,U) (for

any f ∈ N(KK′,U) and v ∈ V we have v · f (K) = f (Kv) ⊆ f (KK′) ⊆ U).

To show that F(G,A) is a topological group, suppose f1, f2 ∈ F(G,A) and f1 +

f2 ∈ N(K,U). For each x ∈ K there are neighborhoods Px,Qx ⊆ A of f1(x), f2(x),

respectively, such that Px +Qx ⊆ U. Because G is locally compact, there is a compact

set Kx ⊆ f −1
1 (Px) ∩ f −1

2 (Qx) containing a neighborhood Ux of x. The Ux’s cover all

of K, so we can choose a finite subcovering. Let K1, . . . ,Kn be the corresponding

Kx’s, P1, . . . ,Pn the corresponding Px’s, and Q1, . . . ,Qn the corresponding Qx’s. Let

N1 =
⋂n

i=1 N(Ki,Pi) and N2 =
⋂n

i=1 N(Ki,Qi). Then Nk is a neighborhood of fk

(k = 1, 2) in F(G,A) such that N1 + N2 ⊆ N(K,U) (if h1 ∈ N1, h2 ∈ N2 then for each

x ∈ K there is a corresponding Ki 3 x, and h1(Ki) ⊆ Pi, h2(Ki) ⊆ Qi,Pi + Qi ⊆ U ⇒

(h1 + h2)(x) ∈ (h1 + h2)(Ki) ⊆ h1(Ki) + h2(Ki) ⊆ U, i.e. h1 + h2 ∈ N(K,U)). This

shows that the map + : F(G,A) × F(G,A)→ F(G,A) is continuous. Finally, the map

− : F(G,A)→ F(G,A) is continuous because −N(K,U) = N(K,−U).
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The natural map φ : A→ F(G,A) : a 7→ (g 7→ g · a) is continuous: suppose a ∈ A

is in the preimage of N(K,U). Note φ−1(N(K,U)) is the set of a ∈ A with K · a ⊆ U.

For each x ∈ K there are neighborhoods Gx ⊆ G of x and Ax ⊆ A of a such that

Gx ·Ax ⊆ U, and by compactness of K, finitely many such neighborhoods G1, . . . ,Gn

cover K; let A1, . . . ,An be the corresponding open sets in A. Then A0 :=
⋂n

i=1 Ai is

a neighborhood of a in φ−1(N(K,U)) since each x ∈ K is contained in some Gi, and

Gi · Ai ⊆ U ⇒ Gi · A0 ⊆ U. Furthermore, φ is proper, i.e. open onto its image: the

image of the open set U ⊆ A is Im(φ) ∩N({e},U).

In fact, φ has a continuous retraction f 7→ f (e), which is a homomorphism of

abelian groups. This implies φ ∈ S because in the categoryMne
G of topological G-

modules with continuous (not G-equivariant) homomorphisms (see Section 1.3.3.1),

the sequence 0→ A→ F(G,A)→ F(G,A)/A→ 0 is split (by Lemma 1.2.4)1.

Finally, we show that the map φ : A 7→ F(G,A) kills the cohomology. Suppose

f ∈ Zn(G,A), so δn f = 0. Define f ′ ∈ Cn−1(G,F(G,A)) by f ′(g1, . . . , gn−1)(x) =

f (x, g1, . . . , gn−1) ( f ′ is easily seen to be continuous). Then, if φn : Cn(G,A) →

Cn(G,F(G,A)) is the induced map on cohomology f 7→ φ ◦ f then φn( f ) = δn−1 f ′,

i.e. φn( f ) = 0 ∈ Hn
c (G,F(G,A)): indeed,

φn( f )(g1, . . . , gn)(x) = x · f (g1, . . . , gn)

whereas

δn−1 f ′(g1, . . . , gn)(x) = (g1 · f ′(g2, . . . , gn))(x) − f ′(g1g2, g3, . . . , gn)(x) + · · ·

+ (−1)n−1 f ′(g1, · · · , gn−2, gn−1gn)(x) + (−1)n f ′(g1, · · · , gn−1)(x)

= f (xg1, g2, . . . , gn) − f (x, g1g2, g3, · · · , gn)

+ · · · + (−1)n−1 f (x, g1, · · · , gn−2, gn−1gn) + (−1)n f (x, g1, · · · , gn−1)

Replacing g0 by x in Equation (3) and setting that equation equal to zero (since f is

a cocycle), we see the two are the same.

Thus, by Theorem 1.2.13 we have

1This argument is due to Theo Bühler - private communication.
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Theorem 3.1.1. Extn
MG,S(Z,A) = Hn

c (G,A) for locally compact G.

Note that F(G,A) is Hausdorff if A is: we just need to show F(G,A) is T1, i.e.

if f : G → A is a continuous map, we need to show { f } is closed in F(G,A).

Given f ′ ∈ F(G,A), f ′ , f , there is some element g ∈ G with f ′(g) , f (g), so

N({g},Ar{ f (g)}) is a neighborhood of f ′ that does not contain f (since A is Hausdorff,

{ f (g)} is closed). This shows that F(G,A) is T1. Thus we also have:

Corollary 3.1.2. Extn
MH

G ,S
(Z,A) = Hn

c (G,A) for locally compact G and Hausdorff A.

Also note that if G is locally compact and σ-compact and A is a complete metric

topological G-module, then F(G,A) is a complete metric topological G-module.

Indeed, since A is metrizable, the topology of compact convergence induces the

topology on F(G,A). It is well-known that if X is σ-compact and Y is a complete

metric space, then the set of functions X → Y, with the compact convergence

topology, is a complete metric space (for example, see exercise 46.10 in [22]). Finally,

if G is locally compact, then G is compactly generated, hence the set of continuous

functions G→ A is closed in the set of all functions under the compact convergence

topology (for example, see Theorem 46.5 in [22]).

Corollary 3.1.3. Let G be locally compact and σ-compact. Let A be a completely

metrizable G-module. Then Extn
Mcm

G ,S(Z,A) = Hn
c (G,A).

3.2. Moore’s Measurable Cohomology

Let G be a second countable Hausdorff locally compact group (this implies G

is Polish). Moore [21] defines the measurable cochain theory (Hn
m(G,A))∞n=0 inMP

G

and shows that it has all the good properties one could want for a cohomology

theory. In fact, it seems the only way to improve this theory would be to have one

that works for more general topological groups G and topological G-modules.

Moore defines two a priori different cohomology theories on MP
G which turn

out to yield isomorphic cohomologies. For A ∈ MP
G, let C0(G,A) = C0(G,A) = A.

Let Cn(G,A) be the set of measurable functions from Gn to A, and let Cn(G,A) be
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Cn(G,A)/ ∼, where∼ is the relation under which two functions are equivalent if and

only if they are equal almost everywhere (with respect some Haar measure on Gn).

Define the coboundary operator δn : Cn(G,A) → Cn+1(G,A) as usual, by Equation

(3), and define δn : Cn(G,A) → Cn+1(G,A) in the same way. We defined Hn
m(G,A)

to be the n-th cohomology group of the complex (Cn(G,A), δn) in Section 2.1.1.1.

Now let Hn(G,A) = Hn
m(G,A), and let Hn(G,A) be the n-th cohomology group of the

complex (Cn(G,A), δn). Clearly, H0(G,A) = H0(G,A) = AG. Moore proves that both

the functors Hn(G,−) and Hn(G,−) give an exact connected sequence of functors

[21, Theorem 4]. Moreover, he puts a topology2 and a G-module structure on

I(A) := C1(G,A) and shows that I(A) is a topological G-module such that there is

a proper injection A → I(A) [21, Proposition 13] and Hn(G, I(A)) = Hn(G, I(A)) = 0

[21, Proposition 21]. Thus, by the universality of Ext, we have

Theorem 3.2.1. Let G be second countable, Hausdorff, and locally compact. Then

Extn
MP

G,P(MP
G)(Z,A) = Hn

m(G,A) = Hn(G,A) for all n and all A ∈ MP
G.

Of course, the first cohomology group H1
m(G,A) is the set of measurable crossed

homomorphisms modulo the principal ones, and it turns out [15, p. 8, Remark

1] that any measurable crossed homomorphisms is continuous. Here we show

precisely why this is true. Moore stated [21, p. 5, Proposition 5(a)] that a measurable

homomorphism is continuous, citing Banach’s work [2] and Kuratowski’s [16].

This resulted in some confusion since Banach calls a function measurable if it is

the (pointwise) limit of a sequence of continuous functions. As Neeb [23] noted,

if X is connected and Y is discrete, then any continuous function f : X → Y is

constant, hence any limit of such functions is constant, but there are certainly Borel-

measurable functions that are not constant (for example, if X = [0, 1] and Y = {a, b}

2The topology on I(A) is given by a metric: given a metric ρ on A, first one chooses a finite

measure dν on G that is equivalent to the Haar measure and then defines the metric by ρ̄( f1, f2) =∫
G ρ( f1(x), f2(x))dν(x). It is interesting to note that one could use a similar definition for C1(G,A)

instead of C1(G,A) and get a pseudometric instead; then, the Kolmogorov quotient is precisely

C1(G,A).
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is the discrete space with two points, we can take the function f with f (0) = a and

f (x) = b for x > 0). As Moore pointed out, however (see [24]), it is indeed proven

in Kuratowski’s work [16] that a Borel-measurable homomorphism is continuous.

For completeness, here we give a proof similar to that in Kuratowski’s work that

shows that any Borel-measurable crossed homomorphism is continuous.

We first recall two easy facts [37, p. 52]. (1) A map f : X → Y is continuous if

and only if it is continuous at every point x ∈ X, i.e. for every neighborhood N of

f (x), f −1(N) is a neighborhood of x. (2) a map f : X → Y is continuous at x ∈ X if

and only if, for every net xδ → x, we have f (xδ)→ f (x) (if X is first-countable, it is

enough to consider sequences instead of nets).

Lemma 3.2.2. Let G be a topological group and A a topological G-module. If f : G→ A

is a crossed homomorphism (i.e. f (xy) = x f (y) + f (x)) that is continuous at a point x0,

then f is continuous everywhere.

Proof. First note that the continuity of the map G × A → A : (g, a) 7→ g · a

implies that if aδ → a ∈ A and gδ → g ∈ G then gδ · aδ → g · a; in particular,

g · aδ → g · a, and similarly when A is replaced by G. Also, the continuity of the

maps A × A → A : (a, b) 7→ a ± b implies that if aδ → a ∈ A and bδ → b ∈ A then

aδ − bδ → a − b.

A little algebra with crossed homomorphisms shows that f (e) = 0 and f (g−1) =

−g−1
· f (g). Now suppose we have a convergent net xδ → x. Let x = gx0. Then

g−1xδ → x0

f (g−1xδ)→ f (x0)

(g−1
· f (xδ) + f (g−1))→ f (x0)

(g−1
· f (xδ) − g−1

· f (g))→ f (x0)

( f (xδ) − f (g))→ g · f (x0)

f (xδ)→ g · f (x0) + f (g) = f (gx0) = f (x)

so f is continuous at x. �
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Definition 3.2.3. A subset is nowhere dense if its closure has empty interior. A

subset is first category if it is the countable union of nowhere dense sets. Otherwise, the

subset is said to be second category. Following [16], a subset B in a topological space X

is Baire if there is an open set U ⊆ X such that the symmetric difference of B and U is first

category.

It is easy to see that the Baire subsets of a space form a σ-algebra[16, p. 88]

containing the open sets, hence containing the Borel σ-algebra.

Definition 3.2.4. A map f : X→ Y of topological spaces satisfies the Baire property

if for every open set U ⊆ Y, f −1(U) is a Baire set in X.

Note that, since the Borel measurable sets are Baire, any Borel measurable map

has the Baire property.

Lemma 3.2.5. If Y is second-countable, then f : X → Y satisfies the Baire property if

and only if there is a first category set P ⊆ X such that f |X r P is continuous.

Proof. This is proven in [16, p. 400]. �

Theorem 3.2.6. If G is a first countable topological group that is second category in

itself and A is a second countable topological G-module then any crossed homomorphism f :

G→ A satisfying the Baire property (in particular, any measurable crossed homomorphism)

is continuous.

Proof. The proof follows that of [2, Theorem 4, p. 23]. Since f satisfies the Baire

property, by Lemma 3.2.5 there is a first category set P ⊆ G such that f |G r P is

continuous. Suppose limn→∞ xn = e ∈ G. Then xnP is a first category set, for each n.

Thus

S := P ∪
⋃

n

xnP

is a first category set, hence there is an element x of G which is not in S, i.e. such

that x < P and x < xnP, hence x−1
n x < P, for all n. But f is continuous at G r P, so we
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have

lim
n→∞

f (x−1
n x) = f (x)

Now f (x−1
n x) = x−1

n f (x) + f (x−1
n ) = x−1

n ( f (x) − f (xn)). Thus

f (x) = (lim
n→∞

x−1
n ) · (lim

n→∞
( f (x) − f (xn))) = f (x) − lim

n→∞
f (xn)

so limn→∞ f (xn) = 0 = f (e). This means f is continuous at e ∈ G, hence continuous

everywhere by Lemma 3.2.2. �

Note that a group G is second countable in itself if and only if it is a Baire

space, i.e. any first category subset of G has empty interior [37, Ex. 115, p. 250].

In particular, the theorem applies in Moore’s setting where G is locally compact

Polish and A is Polish.

3.3. Michael’s Selection Theorem

Ernest Michael developed the famous theory of continuous selections, which is

applied in Wigner’s work [35, p. 4]. For a set X, we will denote the power set of

X by 2X. For a topological space X, we will denote the set of all non-empty closed

subsets of X by E(X). For two sets X,Y, a carrier φ : X → 2Y (or X → S for some

subset S ⊆ 2Y) is just a function on X that takes values in the subsets of Y. Let X

and Y be topological spaces from now on. A selection (or continuous selection)

for the carrier φ : X → 2Y is a continuous map f : X → Y such that f (x) ∈ φ(x) for

all x ∈ X. A carrier φ : X → 2Y is lower semi-continuous (l.s.c.) if for every open

subset V of Y the set {x ∈ X | φ(x) ∩ V , ∅} is open in X.

In Michael’s work, the concept of dimension is that of Lebesgue dimension

[20], i.e. dim X ≤ n iff every finite open covering U of X has an open refinement

V such that every element x ∈ X is in at most n + 1 elements of V, and dim X is

the minimum n such that dim X ≤ n. Also, for a closed subset A ⊆ X, we have

dimX(X r A) ≤ n if dim C ≤ n for every C ⊆ X r A which is closed in X.
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It is unnecessary for this exposition to know what Cn,LCn, and equi-LCn mean,

but suffice it to say that if n = −1 then any topological space X is Cn and LCn, and

any family S ⊆ 2X satisfies equi-LCn.

Recall that a topological space X is paracompact if every open coverU of X has

an open refinement V that is locally finite, i.e. every x ∈ X has a neighborhood

which intersects only finitely many elements ofV.

Theorem 3.3.1 (Michael, Theorem 1.2 in [20]). Let X be a paracompact space, A ⊆ X

closed with dimX(X r A) ≤ n + 1, Y a complete metric space, S ⊆ E(Y) equi-LCn, and

φ : X → S an l.s.c. carrier. Then every selection for φ | A can be extended to a selection

for φ | U for some open U ⊇ A. If also every S ∈ S is Cn, then one can take U = X.

The following corollary is slightly stronger than Theorem M that Wigner cited

from Michael [35, p. 4].

Corollary 3.3.2 ([35]). If B is a complete metric topological group, C is any T1

topological space, β : B → C is an open map, X is a zero-dimensional paracompact space,

and q : X → C is a continuous map, then there is a continuous map ρ : X → B such that

β ◦ ρ = q.

Proof. Consider the carrier φ : X→ E(B) : x 7→ β−1(q(x)) (note β−1(q(x)) is closed

since C is T1). This carrier is l.s.c. because for an open subset V ⊆ B we have

{x ∈ X | φ(x) ∩ V , ∅} = {x ∈ X | β−1(q(x)) ∩ V , ∅}

= {x ∈ X | ∃v ∈ V, β(v) = q(x)}

= q−1(β(V)),

which is open. In Theorem 3.3.1, take A = ∅ and Y = B. Then dimX(X r A) = 0

since any closed subset C of a zero-dimensional space X is zero-dimensional (given

a finite coverU of C, pull back the open sets to open sets in X and add XrC to the

cover - this is a cover of X, so there is a finite disjoint open refinement, which gives

a finite disjoint open refinement ofU). The theorem says that there is a continuous

function ρ : X→ B such that ρ(x) ∈ β−1(q(x)) for all x, i.e. β ◦ ρ = q. �
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Recall that a space X is σ-compact if it is the union of countably many compact

subspaces. Suppose G is a zero-dimensional, locally compact, σ-compact, Haus-

dorff group. Then we claim Gn is a paracompact zero-dimensional space for all

n ≥ 1. It is easy to see that a finite product of σ-compact/locally compact/zero-

dimensional spaces is still σ-compact/locally compact/zero-dimensional. Now we

show that a locally compact, σ-compact Hausdorff topological space X is paracom-

pact. Suppose we have a coveringU = {Uα} of X. By σ-compactness, X =
⋃
∞

n=1 Kn,

where each Kn is compact. By local compactness and Hausdorffness, each point

x ∈ X has a base consisting of compact neighborhoods, i.e. compact sets Cx con-

taining a neighborhood Ux of x. These Ux cover each Kn, so we can find a finite

subcovering {U1
n, . . . ,U

Nn
n } for each Kn. Thus we have a countable collection of

compact sets {{Ki
n}

Nn ∞

i=1 n=1 that cover X and without loss of generality we can assume

these are the K1,K2, . . . and that there is an open set Un ⊆ Kn for each n such that the

Un cover all of X. Now, for each n,U provides a covering of Kn, so we can choose a

finite subcollection U1
n, . . . ,U

kn
n ∈ U that cover Kn. We construct a refinementV of

U as follows: let Vi
n = Ui

n r (K1 ∪ · · · ∪ Kn−1) (with Vi
1 = Ui

1) for all n = 1, 2, . . . and

i = 1, . . . , kn. Note that since X is Hausdorff, K1 is closed so Ui
2 r K1 is open for all

i = 1, . . . , k2 (this is why the group G must be Hausdorff - a local base of compact

neighborhoods exists if G is just locally compact and not Hausdorff, but then the

compact sets are not necessarily closed). SetV = {Vi
n}

kn ∞

i=1 n=1. ThenV is locally finite

because each x ∈ X lies in some Un, and hence it can only lie in Vi
m for m ≤ n.

Theorem 3.3.3 ([35]). Suppose G is locally compact, σ-compact, and zero-dimensional.

For A inMcm
G and all n, we have Hn

c (G,A) = Extn
Mcm

G ,P(Mcm
G )(Z,A).

Proof. Clearly, H0
c (G,A) = Ext0

Mcm
G ,P(Mcm

G )(Z,A). By the universality of the

Exti
Mcm

G ,P(Mcm
G )(Z,A), we just need to show that the Hi

c(G,A) are effaceable and give

an exact connected sequence of functors. We showed effaceability in Section 3.1.

If we have an exact sequence 0 → A α
−→ B

β
−→ C → 0 in P(Mcm

G ) then we obtain

an exact sequence 0 → Cn(G,A) → Cn(G,B) → Cn(G,C) → 0 for every n, since if
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we have a map q ∈ Cn(G,C) then by Corollary 3.3.2 there is a map ρ ∈ Cn(G,B) that

maps to q. Thus we get an exact sequence on cohomology by the Snake Lemma. �

Corollary 3.3.4. Suppose G is locally compact, σ-compact, and zero-dimensional.

For A inMP
G and for all n, we have Hn

c (G,A) = Hn
m(G,A).

Proof. The proof of the preceding theorem shows that Hn
c (G,A) = Extn

MP
G,P(MP

G)(Z,A),

which is Moore’s cohomology by Theorem 3.2.1. �
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CHAPTER 4

Ext for Pseudometric and Complete Metric G-Modules

In this chapter we prove that for topological G-modules A and B that are

complete metric, the groups Extn(A,B) are the same whether we are working in

(MG,P(MG)), (Mpm
G ,P(Mpm

G )), or (Mcm
G ,P(Mcm

G )), a result quoted by Wigner in [35]

from Lawrence Brown, whose proof was never published.

4.1. Background

A pseudometric (see Section 1.3.3.2) d on a group G is called left- (resp. right-)

invariant if d(gx, gy) = d(x, y) (resp. d(xg, yg) = d(x, y)) for all g, x, y ∈ G. If G is

abelian, these notions are equivalent and called translation-invariant.

A topological group G is called weakly separable1 if any uniform cover of G

has a countable subcover. Recall that an open cover {Ui} of G is a uniform cover

if there exists an open set U ⊆ G such that either (1) ∀g ∈ G ∃i gU ⊆ Ui or (2)

∀g ∈ G ∃i Ug ⊆ Ui, depending on whether we are talking about the left-uniform

structure of G or the right-uniform structure. Thus G is weakly separable if and

only if for every open set U ⊆ G, the cover {gU}g∈G has a countable subcover, or

equivalently if for every open set U ⊆ G the cover {Ug}g∈G has a countable subcover.

Theorem 4.1.1. If a topological group G is first countable (or equivalently, first count-

able at e ∈ G), then its topology is induced by a left-invariant pseudometric.

Proof. This is Theorem 12.2.3 of [37]. �

Corollary 4.1.2. The topology of a pseudometrizable topological group is induced by

a left-invariant pseudometric.

1This is the terminology used by Wigner and Lawrence Brown [35]; it seems the more modern

terminology is trans-separable, where “trans” stands for “translation” [7]
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Proof. The collection {B(e, 1/n)}∞n=1 is a local base at e ∈ G. �

Lemma 4.1.3. Let A be an abelian group and F a collection of subsets of A such that:

(a) F is a filterbase, i.e. F , ∅, ∅ < F , and for any U,V ∈ F there exists W ∈ F with

W ⊆ U ∩ V;

(b) each U ∈ F is symmetric (i.e. U = −U); and

(c) for each U ∈ F there exists V ∈ F with V + V ⊆ U.

Then there is a unique group topology for A such that F is a local base for the neighborhoods

of 0 ∈ A.

Proof. This is Theorem 12.1.6 in [37]. Note that 0 ∈ U for all U ∈ F since there

is a symmetric nonempty neighborhood V ⊆ U such that V + V ⊆ U. �

Corollary 4.1.4. Suppose A is a G-module and F is a collection of subsets of A

satisfying the conditions in Lemma 4.1.3 and also the following:

(d1) for every W ∈ F there exists a neighborhood U of e ∈ G, and there exists V ∈ F

such that U · V ⊆W;

(d2) for every g ∈ G and every U ∈ F there exists V ∈ F such that g · V ⊆ U; and

(d3) for every x ∈ A and every U ∈ F there exists a neighborhood V of e ∈ G such that

V · x − x ⊆ U.

Then there is a unique topology for A such that F is a local base for the neighborhoods of

0 ∈ A and A is a topological G-module under this topology.

Proof. By Lemma 4.1.3 there is a unique group topology for A, so we just have

to show this topology is a topology for a topological G-module. First, (d1) and (d2)

imply

(d4) for every W ∈ F and for every g ∈ G there exists a neighborhood U of g in

G and there exists V ∈ F such that U · V ⊆W.

Indeed, given W ∈ F and g ∈ G, there exists W′
∈ F with g ·W′

⊆ W by (d2) and

there exists a neighborhood U of e ∈ G and there exists V ∈ F such that U ·V ⊆W′

by (d1), hence gU · V ⊆ g ·W′
⊆W.

91



Second, (d3) and (d4) imply

(d5) for every x ∈ A, g ∈ G, and U ∈ F there exists a neighborhood V of g ∈ G

such that V · x − g · x ⊆ U.

This is because given x ∈ A, g ∈ G, and U ∈ F , there exists a neighborhood W

of g ∈ G and there exists V ∈ F such that W · V ⊆ U by (d4), and there exists a

neighborhood V′ of e ∈ G such that V′ · x − x ⊆ V by (d3), hence gV′ · x − g · x ⊆

g · V ⊆W · V ⊆ U.

Finally, to show A is a topological G-module, suppose W0 is a neighborhood of

g·x in A. Then there exists W ∈ F such that W ⊆W0−g·x because F is a local base at

0. Next, there exists W′
∈ F with W′+ W′

⊆W by (c). There exists a neighborhood

U1 of g ∈ G and there exists V1 ∈ F such that U1 · V ⊆ W′ by (d4). There exists a

neighborhood U2 of g ∈ G such that U2 · x− g · x ⊆W′ by (d5), i.e. U2 · x ⊆W′ + g · x.

Letting U = U1∩U2, we have U ·(V+x) ⊆ U ·V+U ·x ⊆W′+W′+g·x ⊆W+g·x = W0.

Thus, U is a neighborhood of g ∈ G and V + x is a neighborhood of x in A such that

U · (V + x) ⊆W0, which means A is a topological G-module. �

4.2. Extensions of Pseudometric G-modules

Lemma 4.2.1. Suppose G is weakly separable and we are given an injective proper map

ι : B→ E of topological G-modules where B is pseudometrizable. Then there is a topology

T′ on E which makes E a topological G-module such that

(1) the induced map i : B→ (E,T′) is still an injective proper map,

(2) T′ is coarser than the original topology T on E, and

(3) T′ is induced by a left-invariant pseudometric.

Proof. We will denote by BB(0, ε) the open ε-ball at 0 in B. Construct a local

base F = {Un}
∞

n=0 for 0 ∈ E as follows. Let U0 = E. For each n = 1, 2, . . . in order,

we perform the following steps.

(i) Let V1
n be an open set in E such that V1

n ∩ B = BB(0, 1/n).

(ii) Let V2
n = V1

n ∩Un−1.
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(iii) Let V3
n be a neighborhood of 0 ∈ E such that V3

n + V3
n + V3

n ⊆ V2
n (0 + 0 + 0 ∈ V′n

so there are open sets G1,G2,G3 containing 0 such that G1 + G2 + G3 ⊆ V′n; let

U′n = G1 ∩ G2 ∩ G3).

(iv) Let V4
n be a neighborhood of 0 ∈ E and Wn a neighborhood of e ∈ G such that

Wn · V4
n ⊆ V3

n (such V4
n,Wn exist since e · 0 ∈ V3

n); note that V4
n ⊆ V3

n.

(v) Since G is weakly separable, the covering {Wng}g∈G has a countable subcover-

ing {Wng(n)
i }
∞

i=1. Let Vn,i = (g(n)
i )−1

· V4
n, and let V5

n = V4
n ∩

⋂n
m=1

⋂n
i=1 Vm,i.

(vi) Let Un = V5
n ∩ −V5

n.

We check that F satisfies the requirements of Corollary 4.1.4. Clearly F is

nonempty and ∅ < F since each Un contains 0. It is trivial to check these require-

ments for U0 (for all n ≥ 1 we have Un ⊆ U0), so we check the requirements are

satisfied for Un,n ≥ 1. For any m ≤ n,Un ⊆ Um ∩ Un by step (ii), so property (a)

of Lemma 4.1.3 is satisfied. By step (vi), each Un is symmetric, so (b) is satisfied.

By step (iii), Un+1 + Un+1 ⊆ Un, so (c) is satisfied. Next, (d1) is satisfied because of

step (iv) in the construction above. To check (d2), let g ∈ G and Un be given; then

g ∈ Wn+1g(n+1)
i for some i. Let N = max{n + 1, i}. Then UN ⊆ Vn+1,i = (g(n+1)

i )−1
· V4

n+1

(if i ≤ n + 1 then UN = Un+1 ⊆ V5
n+1 ⊆ Vn+1,i; otherwise, UN = Ui ⊆ V5

i ⊆ Vn+1,i). Thus

g ·UN ⊆Wn+1g(n+1)
i · ((g(n+1)

i )−1
·V4

n+1) = Wn+1 ·V4
n+1 ⊆ V3

n+1 ⊆ Un. The condition (d3) is

automatically satisfied since each Un is open in T and E is a topological G-module

under T. Thus, by Corollary 4.1.4, T′ is a topology for a topological G-module.

Now we check (1) the induced map i : B → (E,T′) is a homeomorphism onto

its image. To show that i is continuous, it is enough to show it is continuous at

0, which is true since any neighborhood of 0 in (E,T′) contains Un for some n and

Un ∩ B = ι−1(Un) is open. To show that i is open onto its image, note that for any

open set U ⊆ B and any x ∈ U there exists n with BB(x, 1/n) ⊆ U, and (Un + i(x))∩ B

is a neighborhood of i(x) contained in i(U). Hence i(U) is covered by open subsets

of i(B) and therefore is open in i(B). (2) T′ is coarser than T: let U be an open set in

T′ and x ∈ U. Then there exists n such that x + Un ⊆ U, and x + Un is open in T, so
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U is covered by open sets in T, which implies U is open in T. (3) T′ is induced by a

left-invariant pseudometric by Theorem 4.1.1. �

Remark. Note that it would be enough to let V3
n in step (iii) above be a neigh-

borhood of 0 such that V3
n + V3

n ⊆ V2
n, but the proof of Theorem 4.1.1 involves

taking a local base {Un}
∞

n=1 at 0 such that Un + Un + Un ⊆ Un−1 for all n; then we

know explicitly that under the pseudometric constructed from {Un}
∞

n=1, if x ∈ Un

then d(0, x) ≤ 2−n. This implies that if (i(bn)) is a Cauchy sequence of elements in

E then (bn) is a Cauchy sequence in B. For every ε > 0, if n is a natural number

with 1/n < ε, we can find a natural number N such that for all p, q ≥ N we have

dE(i(bp), i(bq)) < 2−n. This means i(bp − bq) ∈ Un, so dB(bp, bq) < 1/n < ε, i.e. (bn) is

Cauchy in B.

Lemma 4.2.2. Let G be a weakly separable topological group. Let A and B be pseu-

dometrizable topological G-modules. The natural map Ext1
M

pm
G ,P(Mpm

G )(A,B)→ Ext1
MG,P(MG)(A,B)

is an isomorphism. In other words, for any extension

X : 0→ B i
−→ E

q
−→ A→ 0

where A and B are pseudometrizable, E is pseudometrizable as well.

Proof. Given an extension X as above of topological G-modules with A and B

pseudometric, let TB be the topology induced on E from B by Lemma 4.2.1 and

let TA be the weak topology on E with respect to q. Now TA is a pseudometric

topology making E a topological G-module (see Lemma 1.3.13); the pseudometric

is given by d(x, y) = d(q(x), q(y)). Let T′ be the sup of TA and TB (see Section 1.3.3.3).

It is easy to see that the sup of any collection of topologies under which E is a

topological G-module also makes E a topological G-module. Since both TA and TB

are pseudometric and coarser than the original topology T on E, the sup topology

T′ is a pseudometric topology coarser than T (if d1, d2 are pseudometrics on a set,

we can define the pseudometric d by d(a, b) = d1(a, b) + d2(a, b) and this will give

the sup topology of the two pseudometric topologies corresponding to d1 and d2).
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Now it is easy to see that we have a map of short exact sequences

0 → B i
−→ E

q
−→ A → 0

|| ↓ ||

0 → B i′
−→ E′

q′
−→ A → 0

where E′ is E with the topology T′. Indeed, the only thing to check is that the

bottom row is exact. The induced map i′ : B→ E′ is continuous since the preimage

of every set in TA is B or ∅, and i′ is open as a map onto its image because T′ is

finer than TB. The induced map q′ : E′ → A is continuous because T′ is finer than

TA, and q′ is open because T′ is coarser than the original topology on E. Thus, by

the Short Five Lemma (1.2.10) we have E � E′ and the lemma follows. �

Theorem 4.2.3. Let G be a weakly separable topological group. Let A and B be

pseudometrizable topological G-modules. The natural map

Extn
M

pm
G ,P(Mpm

G )(A,B)→ Extn
MG,P(MG)(A,B)

is an isomorphism for all n ≥ 0.

Proof. We will use Theorem 1.2.11; clearly the inclusion Mpm
G ↪→ MG is fully

faithful, exact, and additive. The surjectivity for n = 1 follows from Lemma 4.2.2.

We just need to show that the hypothesis (E) of Theorem 1.2.11 holds. If we have a

proper monomorphism m : B ↪→ E inMG (resp. MH
G), where B is pseudometrizable

then, using Lemma 4.2.1, let E′ be E with the topology induced from B. Then E′ is

a pseudometrizable G-module, and the identity map f : E→ E′ clearly commutes

with the inclusions B ↪→ E and B ↪→ E′. �

4.3. Extensions of Complete Metric G-modules

Lemma 4.3.1. Let A be a metrizable topological G-module. Then for any translation-

invariant metric d on A (which always exists by Corollary 4.1.2), the metric completion B

of (A, d) is a topological G-module.
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Proof. It is well-known that B is the space of equivalence classes of Cauchy

sequences (xn) ⊆ A, where (xn) and (yn) are equivalent if limn→∞ d(xn, yn) = 0. B has

the metric d′((xn), (yn)) = limn→∞ d(xn, yn). It is easy to see that B is a topological

abelian group, i.e. the negation operation −(xn) = (−xn) and the addition operation

(xn) + (yn) = (xn + yn) are well-defined and continuous.

We show that the action G × B → B : (g, (xn)) 7→ (g · xn), is well-defined and

continuous. Suppose (xn) and (yn) are two Cauchy sequences representing the same

element in B and that we are given ε > 0. By the continuity of the map G×A→ A,

since g · 0 = 0, there exists δ > 0 such that d(x, 0) < δ ⇒ d(g · x, 0) < ε/2. There

exists N such that for all n ≥ N we have d(xn, yn) < δ, and then d(g · xn, g · yn) =

d(g · (xn − yn), 0) < ε/2 for all n ≥ N. But this means d((g · xn), (g · yn)) ≤ ε/2 < ε,

hence the sequences (g · xn) and (g · yn) represent the same element in B.

To show that the map G × B → B is continuous, let g ∈ G, (xn) be a Cauchy

sequence, and ε > 0. Then (by continuity of G×A→ A) there exists a neighborhood

V1 of g in G and δ > 0 such that h ∈ V1, d(x, 0) < 3δ⇒ d(h · x, 0) < ε/3. There exists

N such that d(xN, xn) < δ for all n ≥ N. By continuity of G × A → A, there is a

neighborhood V′ of g such that for all h ∈ V2 we have d(h ·xN, g ·xN) < ε/3. We claim

that for any h ∈ V = V1 ∩ V2 and any Cauchy sequence (yn) with d′((xn), (yn)) < δ

we have d′((h · yn), (g · xn)) < ε. First, d(xN − xn, 0) < δ < 3δ, so d(h · xN, h · xn) < ε/3

for all n ≥ N, hence

d′((h · xN), (h · xn)) ≤ ε/3

Also, there exists M such that d(yp, yq) < δ for all p, q ≥ M. Then for any fixed

m ≥M we have

d(xN, ym) = d′((xN), (ym))

≤ d′((xN), (xn)) + d′((xn), (yn)) + d′((yn), (ym))

< δ + δ + δ = 3δ
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Therefore, d(g · xN, g · ym) < ε/3 for all m ≥M, and

d′((g · xN), (g · yn)) ≤ ε/3

In total, d′((h ·xn), (g · yn)) ≤ d′((h ·xn), (h ·xN))+d′((h ·xN), (g ·xN))+d′((g ·xN), (g · yn)) <

ε/3 + ε/3 + ε/3 = ε. �

Lemma 4.3.2. Let G be a weakly separable topological group. Suppose we have an exact

sequence of topological G-modules 0 → B
β
−→ E α

−→ A → 0. If A and B both have any of

the following properties, so does E: (1) Hausdorff, (2) pseudometrizable, (3) metrizable, (4)

completely metrizable.

Proof. If A is Hausdorff, then the image of B must be closed in E. If B is

Hausdorff, then {0} is closed in B, hence {0} is closed in E, i.e. E is Hausdorff (this

is true with no assumptions on G). If A and B are pseudometrizable, the proof of

Theorem 4.2.3 shows that E is, too. Thus, if A and B are metric G-modules, so is E.

Now suppose A and B are completely metrizable. By the above, E is a metric

G-module, with metric d = d′B + dA, where d′B is induced from the metric dB on B

as in the proof of Theorem 4.2.3 and dA is induced from the metric on A. (Note

that d′B restricted to B is not dB, but equivalent to dB, i.e. they induce the same

topology on B.) We just have to show E is complete, so let Ē be the completion of

E with respect to d. By the universal property of completion, since A is complete

we get a continuous homomorphism of topological abelian groups ᾱ : Ē→ A. The

embedding of E as a dense subset of Ē induces an embedding of B in the kernel K

of ᾱ:
0 → B

β
−→ E α

−→ A → 0

↓ ↓ ||

0 → K → Ē ᾱ
−→ A → 0

Just as in [21, Proposition 3], we can show that the image of B in K is dense.

Suppose x ∈ K; then there is a sequence (xn) of elements of E with xn → x. Since

α(xn) = ᾱ(xn) → 0, for every k = 1, 2, . . . there is a natural number Nk such that for

all n ≥ Nk we have d(xn + B, 0 + B) < 1/k, so there exists bk ∈ B with d(xNk , b) < 1/k.
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Then bk − xNk → 0 and bk = (bk − xNk) + xNk → 0 + x = x. Since bk → x, (bk) is Cauchy

in the metric on E. But by the reasoning in the remark following Theorem 4.2.3,

this means (bk) is Cauchy in B. Since B is complete (under the metric dB on B) and

bn → x, we have x ∈ B. Therefore, the inclusion B ↪→ K is onto and by diagram

chasing, the inclusion E ↪→ Ē is onto, i.e. E is complete. �

Theorem 4.3.3. Let A and B be complete metric G-modules and G weakly separable.

Then the natural map

Extn
Mcm

G ,P(Mcm
G )(A,B)→ Extn

MG,P(MG)(A,B)

is an isomorphism for all n ≥ 0.

Proof. We use Theorem 1.2.11. Again, the inclusion α : Mcm
G ↪→ MG is ob-

viously a fully faithful exact additive functor. Surjectivity for n = 1 is shown by

Lemma 4.3.2, so we just have to show that for any proper monomorphism i : B→ E

with B complete metric there is a complete metric G-module E′, a proper monomor-

phism i′ : B → E′, and a map f : E → E′ with f ◦ i = i′. Using Lemma 4.2.1, let

E1 be E with the pseudometric topology induced from B and let i1 : B → E1 be

the inclusion (of course, setwise i1 = i). Let E0
1 be the closure of {0} in E1. Then

E0
1 is the intersection of all open sets in E1 (because E1 is a topological group), so

E0
1 = {x ∈ E1 | d(x, 0) = 0}. Let EH

1 = E1/E0
1, let p : E1 → EH

1 be the quotient map, and

let j = p ◦ i1. By Lemma 1.3.9, EH
1 has a metric d′ given by d′(p(x), p(y)) = d(x, y).

First we show j : B ↪→ EH
1 is injective. If b ∈ B and i1(b) ∈ E0

1 then i1(b) ∈ U

for each open set U in E1, so i1(b) ∈ i1(V) for each open set V in B (since i is a

homeomorphism onto its image). Since i1 is injective, we have i1(
⋂

V) =
⋂

i1(V),

so i1(b) ∈ i1(
⋂

(V)) (where we take the intersection over all V open in B). But B is

Hausdorff, so
⋂

V = {0}, and i1(b) = 0⇒ b = 0.

Second, j : B ↪→ EH
1 is a homeomorphism onto its image. Of course, j is continuous,

being the composition of continuous functions. Let V be open in B and i1(V) =

U ∩ i1(B), for some open set U in E1. Let x ∈ i1(V). Then there exists ε > 0 such

that BE1(x, ε) ⊆ U, and BEH
1
(p(x), ε) ∩ j(B) ⊆ j(V) (if y + E0

1 ∈ BEH
1
(p(x), ε) ∩ j(B) then
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we may assume without loss of generality that y = i1(b) for some b ∈ B, and

d(p(x), y + E0
1) < ε ⇒ d(x, y) < ε ⇒ y ∈ BE1(x, ε) ∩ i1(B) ⊆ U ∩ i1(B) = i1(V), hence

y + E0
1 ∈ j(V)), which implies j is proper.

Third, the image j(B) is complete under the metric on EH
1 (hence closed in EH

1 ).

Suppose ( j(xn)) is a Cauchy sequence in EH
1 with each xn ∈ B, so (i1(xn)) is a Cauchy

sequence in E1. By the remark following Lemma 4.2.1, (xn) is Cauchy in B. Since B

is complete, (xn) converges to some x ∈ B. Since j is continuous, j(xn)→ j(x). And

because EH
1 is Hausdorff, x is the unique point to which j(xn) converges, so j(B) is

complete and closed in EH
1 .

Now let E′ be the metric completion of EH
1 . By Lemma 4.3.1, E′ is a complete

metric topological G-module. Consider the inclusion i′ : B ↪→ E′ which is the

composition φ ◦ j, where φ : EH
1 ↪→ E′ is the canonical inclusion. The image

i′(B) is a closed subgroup of E′ since j(B) is complete in EH
1 . Since φ is a proper

monomorphism (for any x ∈ EH
1 and ε > 0, BE′(φ(x), ε) ∩ φ(EH

1 ) = φ(BEH
1
(x, ε))) and

the composition of two proper monomorphisms is proper, i′ is a proper monomor-

phism. Clearly the induced map f : E→ E′ commutes with i and i′. �

99



Bibliography

[1] M. Artin and H. U. D. of Mathematics. Grothendieck topologies: notes on a seminar. Harvard

University, Dept. of Mathematics, 1962.
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