
We develop a formal definition of multidimensional trees as abstract

structures in “left-child, right-sibling” form. After developing this

abstract definition, we show how it can be directly implemented as

an ADT suitable for use in parsing applications. Additionally, we

show how, when viewed in a slightly different way, our definition

yields a flat form suitable for serialized input and output.

(Preliminary) Tree-ordered Forests

• ∼ is an (empty) d-dimensional forest.

• If t1, t2, . . . , td are tree ordered forests and X ∈ Σ then

T (X, t1, t2, . . . , td) is a tree-ordered forest. ti is the set of

i-dimensional children of the new node labeled X .

• Nothing else is a tree-ordered forest.

Tree-ordered Forests—Fully Typed

• ∼ is an (empty) (i, d)-forest for all 0 ≤ i ≤ d

• If t1, t2, . . . , td are, respectively, (0, d)-, (1, d)-, . . . ,

(d − 1, d)-forests and X ∈ Σ then T (X, t1, t2, . . . , td) is a

(j, d)-forest for all 0 ≤ j ≤ i, where i is the smallest dimension

such that ti is not empty, or d if all tk are empty. Here each tk

is the successor of the new node labeled X in the kth

dimension.

• Nothing else is a tree-ordered forest.

(n − 1)-dimensional Local Yield

An (n − 1)-dimensional local yield of a node is the set of all

n-dimensional children of that node, which are ordered as an

(n − 1)-dimensional singleton forest, a tree—there must be exactly

one minimum with respect to the (n − 1)-dimensional ordering.

(i, d)-forests

Note that when assigning f6 as the 3-dimensional successor of D,

the root of f6 does not have a 1-dimensional successor. In fact, it

can’t have a 1-dimensional successor—it is the root of a

2-dimensional local yield, which by our definition must be a

singleton 2-dimensional forest. To denote a d-dimensional forest

with a unique minimum (within a local structure, in this sense) in

dimension i, we define an (i, d)-forest, where 0 ≤ i ≤ d, as a forest

whose root has an empty j-dimensional local yield for all j < i.

Example

The terms of the algebra for the two-dimensional tree to the left
are:

F (∼,∼)

E(F (∼,∼),∼)

D(∼,∼)

C(D(∼,∼), E(F (∼,∼),∼))

B(C(D(∼,∼), E(F (∼,∼),∼)),∼)

A(∼, B(C(D(∼,∼), E(F (∼,∼),∼)),∼))

Definition

• ∼ is an (empty) (i, d)-forest in flat form for all 0 ≤ i ≤ d

• If t1, t2, . . . , td are, respectively, (0, d)-, (1, d)-, . . . ,

(d− 1, d)-forests in flat form and X ∈ Σ then X(t1, t2, . . . , td) is

a (j, d)-forest in flat form for all 0 ≤ j ≤ i, where i is the

smallest dimension such that ti is not empty, or d if all tk are

empty. Here each tk is the successor of the new node labeled X

in the kth dimension.

• Nothing else is a forest in flat form.

template<class label_type>

class forest

{

public:

forest(label_type label, /* A forest is a recursive structure:

vector<forest*> links); A node is a list of d links and a node label,

where d is the dimensionality of the forest. */

void set_label(label_type new_label);

void set_link(std::size_t link_number, /* Set link:

forest* new_link); Link accessors are parameterized by dimension. */

label_type get_label() const;

tree* get_successor(

std::size_t link_number) const;

private:

label_type label;

vector<forest*> link;

}

u

γ
l

γ
l

γ
u

β

Γ:

+
β

Abstract

Rule 1

Rule 2

Rule 3

S

S

S

)(S

S S

()

S

S

(1)

(3)

(2)

S

()

S

S

() S

()

S

()

(1)

(3)(3)

Context−Free Grammars (CFGs)

S ∗ S ∗

S

S

b

b

{ }

{ }

{β1, β2}Sa

S

a { }

A:

I: α1:

S

S

{ }

{β1, β2}

{β1, β2}

{ }

β1: β2:

S:

V:

Σ:

S

{ S }

{ a, b } S

S

a S

b

S b

S a

S

S

a

S a

∗

∗

∗

X

A

B

ED F

I

C

G

H

X

I

A

B

D E

C

F

G

H

CB

E F

D

A

CB

E F

D

A

S

a S

b

S b

S a

S

S

a

S a
S

Sa

S

a S
S

S
S

S

b

b

S
Sa

S

a S

’

’

’

’

’
’

S’

S

S’

b

b

S
S

S’

a S’

a
S

Multidimensional Grammars

C++ Class

Abstract Data Type

Flat Form

Algebra

Tree Definition

FE ~

~~

DCB

A

~

~~

~

t1 f1t2

f2

t3 f3t4

f4

t5

f5

t6

Y Y

XX

ExUp:

Y YXX

ExLeft:

C
D

E

G
F

B

A

J

H

I

~ ~

~
~

~
~

~
~

~
~

~~

~

~
~

~

~

~

~

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

X

f1

f2

X

f2

f1

Unified Multidimensional Constructor

Flat Form

Abstract Data Type Example (C++)

Earlham College, Department of Computer Science
David Brown, Ian Kelly, Colin Kern, Alex Lemann, Greg Sandstrom

γ

Two−Dimensional Constructor

Flat Form Example

Representing Multidimensional Trees

Concrete Forms

Tree Adjoining Grammars (TAG)

"Left−child, Right−sibling" Form

Research Fund, and the Earlham CS Collaborative Research Fund.

This research made possible in part by the Ford−Knight Research Grant, the Matthews Summer

