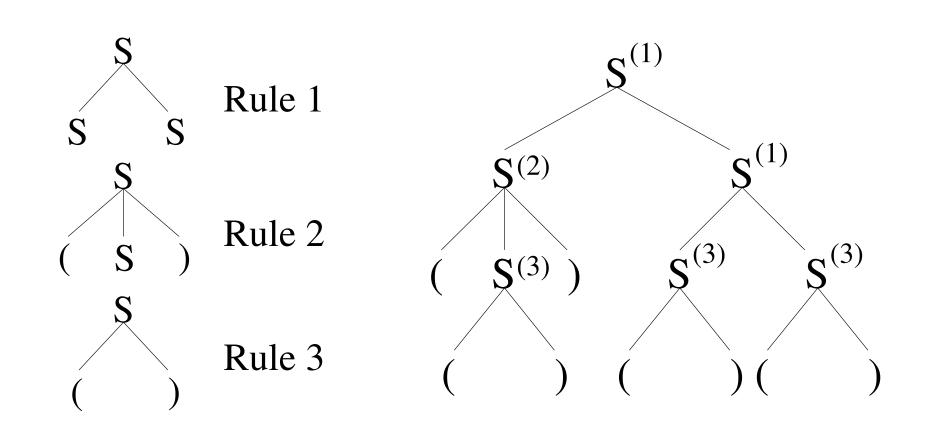
Representing Multidimensional Trees

David Brown, Ian Kelly, Colin Kern, Alex Lemann, Greg Sandstrom Earlham College, Department of Computer Science

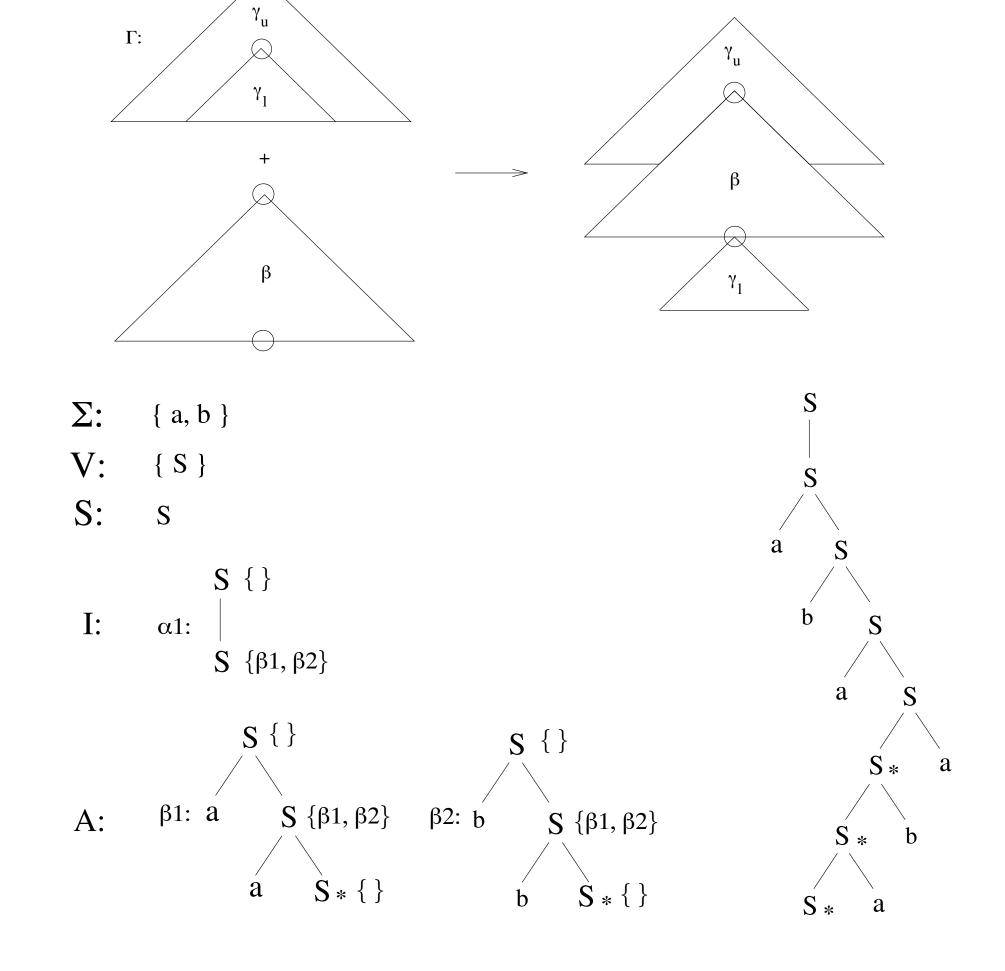
Abstract

We develop a formal definition of multidimensional trees as abstract structures in "left-child, right-sibling" form. After developing this abstract definition, we show how it can be directly implemented as an ADT suitable for use in parsing applications. Additionally, we show how, when viewed in a slightly different way, our definition yields a flat form suitable for serialized input and output.

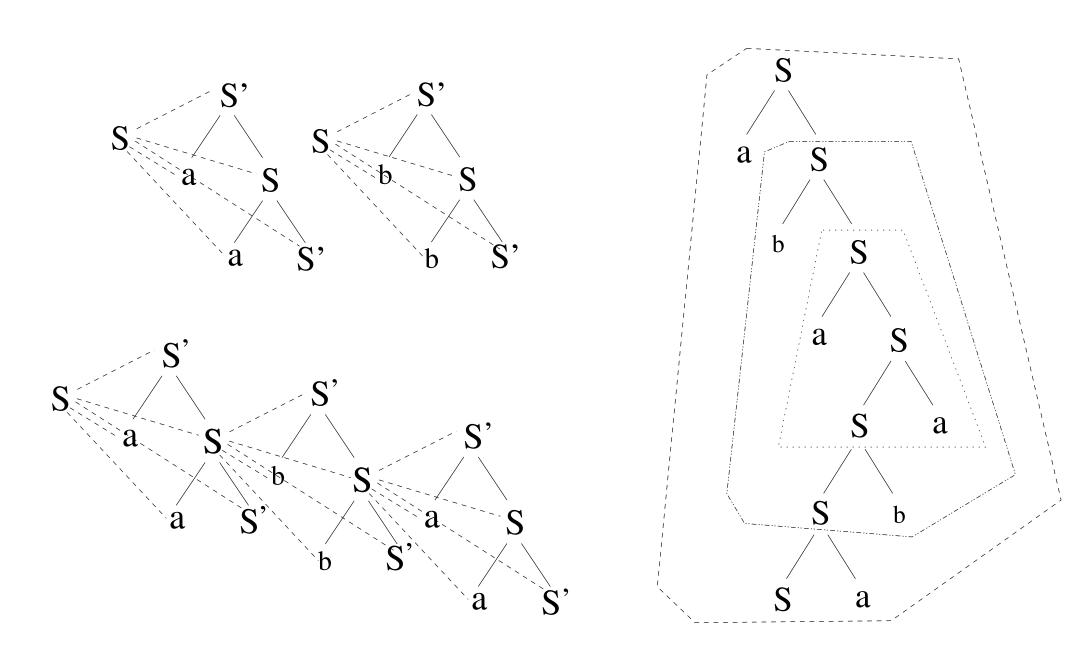
Context-Free Grammars (CFGs)



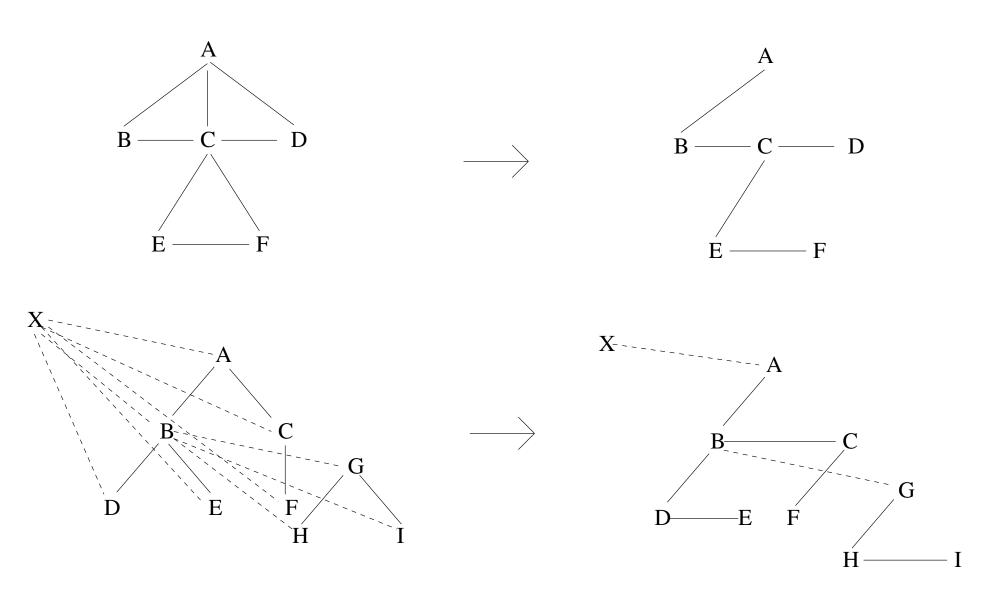
Tree Adjoining Grammars (TAG)



Multidimensional Grammars

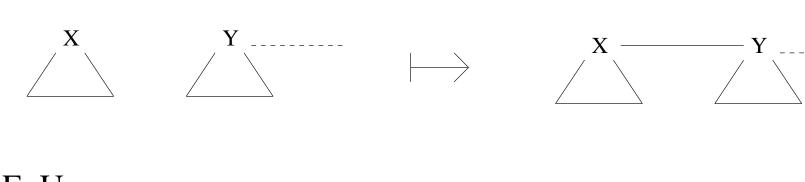


"Left-child, Right-sibling" Form

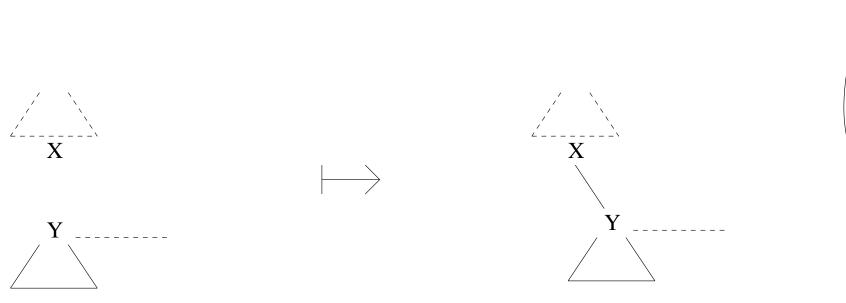


Two-Dimensional Constructor

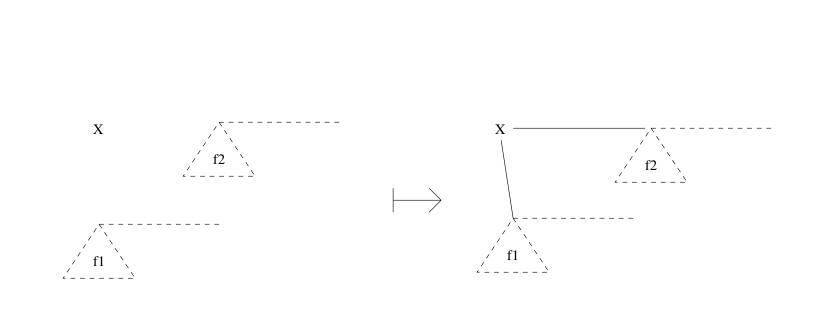
ExLeft:



ExUp:



Unified Multidimensional Constructor



(Preliminary) Tree-ordered Forests

- \sim is an (empty) d-dimensional forest.
- If t_1, t_2, \ldots, t_d are tree ordered forests and $X \in \Sigma$ then $T(X, t_1, t_2, \ldots, t_d)$ is a tree-ordered forest. t_i is the set of i-dimensional children of the new node labeled X.
- Nothing else is a tree-ordered forest.

Tree-ordered Forests—Fully Typed

- \sim is an (empty) (i, d)-forest for all $0 \le i \le d$
- If t_1, t_2, \ldots, t_d are, respectively, (0, d)-, (1, d)-, \ldots , (d-1, d)-forests and $X \in \Sigma$ then $T(X, t_1, t_2, \ldots, t_d)$ is a (j, d)-forest for all $0 \le j \le i$, where i is the smallest dimension such that t_i is not empty, or d if all t_k are empty. Here each t_k is the successor of the new node labeled X in the kth dimension.

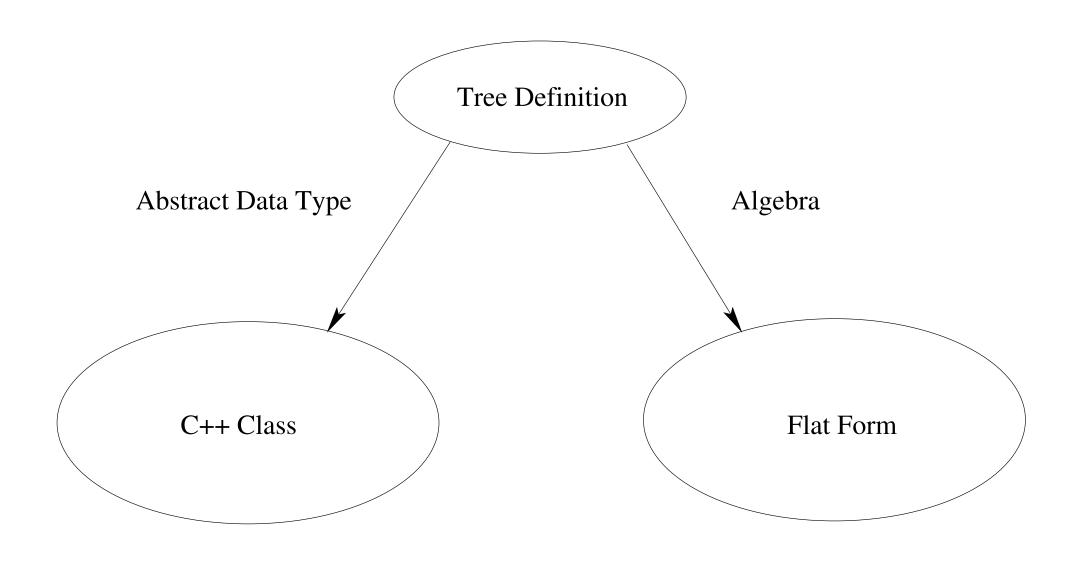
(n-1)-dimensional Local Yield

An (n-1)-dimensional local yield of a node is the set of all n-dimensional children of that node, which are ordered as an (n-1)-dimensional singleton forest, a tree—there must be exactly one minimum with respect to the (n-1)-dimensional ordering.

(i,d)-forests

Note that when assigning f6 as the 3-dimensional successor of D, the root of f6 does not have a 1-dimensional successor. In fact, it can't have a 1-dimensional successor—it is the root of a 2-dimensional local yield, which by our definition must be a singleton 2-dimensional forest. To denote a d-dimensional forest with a unique minimum (within a local structure, in this sense) in dimension i, we define an (i, d)-forest, where $0 \le i \le d$, as a forest whose root has an empty j-dimensional local yield for all j < i.

Concrete Forms



Flat Form

Definition

- \sim is an (empty) (i, d)-forest in flat form for all $0 \le i \le d$
- If t_1, t_2, \ldots, t_d are, respectively, (0, d)-, (1, d)-, \ldots , (d-1, d)-forests in flat form and $X \in \Sigma$ then $X(t_1, t_2, \ldots, t_d)$ is a (j, d)-forest in flat form for all $0 \le j \le i$, where i is the smallest dimension such that t_i is not empty, or d if all t_k are empty. Here each t_k is the successor of the new node labeled X in the kth dimension.
- Nothing else is a forest in flat form.

Flat Form Example

Example

The terms of the algebra for the two-dimensional tree to the left are: $F(\sim,\sim)$ $E(F(\sim,\sim),\sim)$ $D(\sim,\sim)$

 $C(D(\sim, \sim), E(F(\sim, \sim), \sim))$ $B(C(D(\sim, \sim), E(F(\sim, \sim), \sim)), \sim)$ $A(\sim, B(C(D(\sim, \sim), E(F(\sim, \sim), \sim)), \sim))$

Abstract Data Type Example (C++)



This research made possible in part by the Ford–Knight Research Grant, the Matthews Summer Research Fund, and the Earlham CS Collaborative Research Fund.