David Brown, Ian Kelly, Colin Kern, Alex Lemann, Greg Sandstrom
Earlham College, Department of Computer Science

Representing Multidimensional Trees

Abstract

We develop a formal definition of multidimensional trees as abstract

"Left—child, Right—sibling" Form Concrete Forms

structures in “left-child, right-sibling” form. After developing this A A

AN -
/ N/

Tree Definition

abstract definition, we show how it can be directly implemented as

an ADT suitable for use in parsing applications. Additionally, we

show how, when viewed in a slightly different way, our definition Algebra

Abstract Data Type
yields a flat form suitable for serialized input and output.

Context—Free Grammars (CFGs) | / \ /
/S\ Rule 1 /\ l/\ //G
S S

(n ~
/S\ L PR
/K Rule 2 /CN /S\
/S\ Rule 3

Flat Form

Definition

VALV

~ 1 L d)- ' < g <
Ex] eft: e ~ is an (empty) (¢, d)-forest in flat form for all 0 < i < d

o If 1, to, ..., tg are, respectively, (0,d)-, (1,d)-,
(d — 1, d)-forests in flat form and X € ¥ then X (¢1,t2,...,1tq) is
a (j,d)-forest in flat form for all 0 < j < i, where ¢ is the

smallest dimension such that ¢; is not empty, or d if all ¢;. are

empty. Here each % is the successor of the new node labeled X

Tree Adjoining Grammars (TAG)

in the kth dimension.

ExUp:
. Y, e Nothing else is a forest in flat form.
| Yy | PN
///////)j?\\\\\\\ ///////&EQ\\\\\\\ Z)(\\
-
o : Y e Flat Form Example
A /?\ Example
S, The terms of the algebra for the two-dimensional tree to the left
| are:
3 {ab) > - Fi)
Vo is) Unitied Multidimensional Constructor B,
: D(~,~)
S: S / \ C(D(~,~), B(F(~v,~),~))
B(C(D(~,~), E(F(~,~),~)),~)
S {} /\ ; A(~, B(C(D(~,~), B(F(~,~), ~)), ~))
I ol:
S {BL. p2} / \) o .
Al . S{ N\ o R \ ffffffffffff Abstract Data Type Example (C++)
A. Bl a /s \{ﬁl, B2} B2b S IBL p2) S/* \b
3 template<class label_type>
a S«{} b/ \S « {1} S/¥ \a zlass forest
public:

Multidimensional Grammars

/\ i \ R —

\
\
\
\ \
\ I | |
\ I : \
l ! \
I ! I A
‘ b Lo
! | . \
I ’ "
| ; . \
| | : \
I | \
[

I i : . \
I | | \

I : ‘ \

| ! ' . Y

! i ; . \

I ’ : g k !

| ! . ' k !

’ , i : g \ \\
I i : : \
- . . . \
P | : ; . \
- | ! . . | \
: : : \
| i . . !
S ’ ‘ | | L
P i : Y
- i B ‘ . \
- . \
] R \
\
;

/\b\\ /\ b / N\

\
\
\
\ \
e '
ke '
S /“/ |
| , \‘ b P //
| I \\n_" /"/ //
| N s -
————— - .
l e -
-
-
-
E] -
-
-

/\ N

(Preliminary) Tree-ordered Forests

e ~ is an (empty) d-dimensional forest.

o Ift1,t5,...,t4 are tree ordered forests and X € X then
T(X,t1,ta,...,tq) is a tree-ordered forest. t; is the set of
1-dimensional children of the new node labeled X.

e Nothing else is a tree-ordered forest.

Tree-ordered Forests—Fully Typed

e ~ is an (empty) (i,d)-forest for all 0 < ¢ < d

o If t1, to, ..., ty are, respectively, (0,d)-, (1, d)-,
(d — 1, d)-forests and X € 3 then T'(X,t1,t2,...,tq) is a
(7,d)-forest for all 0 < j <14, where ¢ is the smallest dimension
such that ¢; is not empty, or d if all ¢, are empty. Here each ¢
is the successor of the new node labeled X in the kth

dimension.

(n — 1)-dimensional Local Yield

An (n — 1)-dimensional local yield of a node is the set of all
n-dimensional children of that node, which are ordered as an

(n — 1)-dimensional singleton forest, a tree—there must be exactly
one minimum with respect to the (n — 1)-dimensional ordering.

(¢, d)-forests

Note that when assigning f6 as the 3-dimensional successor of D,
the root of f6 does not have a 1-dimensional successor. In fact, it
can’t have a 1-dimensional successor—it is the root of a
2-dimensional local yield, which by our definition must be a
singleton 2-dimensional forest. To denote a d-dimensional forest
with a unique minimum (within a local structure, in this sense) in
dimension i, we define an (7, d)-forest, where 0 < i < d, as a forest
whose root has an empty j-dimensional local yield for all j < 1.

forest(label_type label,
vector<forest*> links) ;

void set_label(label_type new_label);

void set_link(std::size_t link_number,

forest* new_link);
label_type get_label() const;

tree*x get_successor(

std::size_t link_number) const;

private:
label_type label;
vector<forest*> link;

/* A forest is a recursive structure:
A node is a list of d links and a node label,

where d is the dimensionality of the forest. */

/* Set link:
Link accessors are parameterized by dimension. */

This research made possible in part by the Ford—Knight Research Grant, the Matthews Summer
Research Fund, and the Earlham CS Collaborative Research Fund.

