Theoretical Computer Science, 293:2, 2003, pp. 265--305.

wMSO Theories as Grammar Formalisms

James Rogers !

Computer Science Department, Earlham College, Richmond, Indiana, USA

Abstract

We explore the use of weak monadic second-order languages over structures of vary-
ing dimension as specification languages for grammars and automata, focusing, in
particular, on the extension of the longstanding results characterizing the regular
and context-free languages in terms of definability in wS1S (one-dimensional) and
wSnS (two-dimensional), respectively, to a characterization of the Tree-Adjoining
Languages in terms of definability in the weak monadic second-order theory of cer-
tain three-dimensional tree-like structures. We then explore the application of these
results to aspects of an existing large-scale Tree-Adjoining Grammar for English
and close with some speculation on the feasibility of this approach as a means of
building and maintaining such grammars.

Key words: Model-theoretic syntax, wSnS, Descriptive complexity, Tree-adjoining
grammar

1991 MSC: 68Q45, 68Q42, 68Q19

1 Introduction

Much of the research in applying logical apparatus to syntax has had a dis-
tinct proof-theoretic flavor. For the most part, use of model-theoretic tools
has focused on providing semantics for grammar formalisms. In this paper
we explore a sequence of model-theoretic results stretching from 1960 to the
present establishing descriptive characterizations of standard grammar- and
automata-theoretic complexity classes. The associated logical languages pro-
vide a means of defining languages within the various classes in a fully declara-
tive way, abstracting away from the details of the underlying generative mech-

Email address: jrogersQcs.earlham.edu (James Rogers).

1 The author would like to express his gratitude for the careful and patient reading
and many helpful suggestions provided by the anonymous referees.

Preprint submitted to Elsevier Preprint 10 January 2002

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

anisms. These results have application in theoretical explorations of the com-
plexity of linguistic constraints and in investigations of the linguistic content
of existing grammars, and, because they provide a common framework for
formalization, they provide a flexible mechanism for comparing theories ex-
pressed within disparate grammatical systems. Moreover, because they include
effective translations of formulae into automata—albeit not without significant
feasibility issues, a consequence of the extraordinary conciseness of the logical
languages—they have potential for application in practice as a means of spec-
ifying grammars directly in terms of the linguistic principles on which they
are based.

This work has, at its root, results of Biichi [1] and of Elgot [2] dating to the late
‘50’s which establish decidability of the monadic second-order theory of the
natural numbers with successor (what we would now call S1S) by automata-
theoretic techniques. These were extended, in the late ‘60’s, by Doner [3] and
by Thatcher and Wright [4] (for the weak fragment) and Rabin [5] (the full
MSO theories) to the structure of multiple successors—to trees (SnS). From a
computational perspective, what is most attractive about these results is that
the proofs employ constructions that, given an MSO formula, produce a finite-
state automaton that accepts exactly the set of structures that satisfy it. This
has been exploited in verification of the temporal properties of software and
hardware systems by encoding both the behavior of the system, as realized,
and its required behavior in an MSO formula that defines the class of realized
behaviors which fail to satisfy the required behavior, translating this into an
automaton, and then using automata-theoretic techniques to either prove that
the class is empty or to characterize the set of behaviors which fail [6-8].

If we restrict our attention to finite models, the constructions produce ordi-
nary finite-state automata over strings or trees and the weak MSO fragment
suffices. Under these circumstances, definability in wS1S characterizes the reg-
ular string languages and definability in wSnS the recognizable sets of labeled
trees (which yield exactly the Context-Free string languages). Thus any the-
ory of syntax that is based on relationships within strings or within trees that
can be expressed in the wMSO theory of these structures licenses a regular or,
respectively, Context-Free language. We have employed this characterization
to establish that a substantial fragment of a standard GB account of English
syntax licenses a CFL [9], to provide fully declarative static accounts of super-
ficially dynamic aspects of GPSG [10], and to explore the distinctions between
these approaches [11]. The construction, itself, has been employed to produce
recognizers for aspects of the GB account [12,13].

The fundamental limitation of these results is the weakness of the language
classes they characterize—to capture the range of natural languages similar
results for larger classes are necessary. Recently, by viewing the step from
strings to trees as a step from one- to two-dimensional structures and then

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

d Local Composite
0 . (none)
1

Fig. 1. Some 0- and 1-dimensional trees.

generalizing this to tree-like structures of arbitrary dimension, we have ex-
tended these results to an infinite hierarchy of languages that coincides with
Weir’s version of the Control Language Hierarchy [14]. What is particularly
attractive about this approach is the fact that it provides a uniform notion
of grammars and automata which permits essentially standard proofs of the
properties of the local and recognizable sets, as well as the translation from
wMSO formulae to automata, to be applied at all levels of the hierarchy—the
dimension becomes a parameter of the constructions that determines the type
of structures it manipulates but which has no substantive role in the proof
itself.

From the linguistic perspective, what makes this hierarchy attractive is the
fact that the finite-state automata over the three-dimensional structures are, in
essence, Tree-Adjoining Grammars—the foundation of a considerable amount
of current work in applied computational linguistics. Again, there are a number
of theoretical issues that can be clarified by the model-theoretic perspective.
But, these results may prove to be most useful in addressing the overwhelm-
ing complexity of building and maintaining these large grammars. To a large
extent, this complexity is an artifact of the need to distribute the effect of lin-
guistic constraints throughout very large sets of elementary trees. By defining
these constraints with wMSO formulae this process can be left to the automa-
ton construction algorithm. In effect, the wMSO formulae become a sort of
logic-programming for TAGs with the automaton construction serving as a
compiler. This goal is not without significant difficulty, though. The wMSO
formulae are extraordinarily concise—the asymptotic rate of growth of the au-
tomata wrt the size of the formulae is not even elementary-recursive. As with
symbolic model-checking the crucial issue in realizing this program is avoiding
the infeasible automata.

In the next two sections we introduce the hierarchy of relational structures and
corresponding weak monadic second-order theories that form the foundation
of these results. We then (Section 4) introduce the grammars and automata
over these structures and provide the connection between definability in the
MSO theories and these more traditional generative frameworks for theories
of syntax (Sections 5 and 6). The remainder of the paper looks at particular
applications to Tree-Adjoining Grammars, first sketching the equivalence of

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

d Local Composite

Fig. 2. Some 2-dimensional trees.

d Local Composite

S / \\ RN AN |
. . \ - Ty I
N 1 . I \]
N ’
. L

Fig. 3. Some 3-dimensional trees.

definability at the three-dimensional level and the strong generative capacity of
TAG (Section 7), then looking at the treatment of aspects of the current XTAG
grammar for English within this logical framework (Section 8), and ending
with some speculation about the potential of this framework for simplifying
TAG grammar development and maintenance.

2 Multi-Dimensional Tree Domains

We begin by developing a hierarchy of classes of multi-dimensional structures.
At the d™ level these are assemblages of d-dimensional local structures—
structures of depth at most 1 in their major (d™) dimension (see Figures 1,
2, and 3). These local structures consist of a point (the root of the local
structure) and the set of its successors in the d*® dimension (the yield of local
structure) which is required to be an (arbitrary) (i — 1)-dimensional structure.
We also admit both empty local structures and ¢rivial local structure (in which
the yield is empty). Thus, even trivial local i-dimensional structures have an
(1 — 1)-dimensional structure as their yield, albeit an empty one.

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

e @ 1,1) (1,1,1)
(0 1 2 3)

Fig. 4. Point and string domains.

N

o,

€
N
|
|
|
|
|
|
|
|
|

n @

|
|
|
|
|
|
|
|
’ \ |
-— .

(1,0) (L) (2,0)

Fig. 5. A 2-dimensional tree domain.

Composite structures are constructed by identifying the root of one local struc-
ture with a point in the yield of another. Each component structure has a
unique root, which is a member of only a single local structure. Every other
point is a member of exactly two local structures—it is a point in the yield
of one and the root of another (which is, of course, possibly maximal). These
structures are all tree-like in the sense that every point is reachable from the
root by exactly one path of major dimension successor relations. For concrete-
ness, we can assume a canonical form for their domains in which each point
is represented by its address—an encoding of the path leading to it.

At the base of the hierarchy (which we will refer to as the 0 level) we have
point domains: every point is maximal and each composite structure contains
a single local structure. Hence each structure has a domain consisting of a
single point.

At the first level we have 1-dimensional structures—the string domains (Fig-
ure 4). Here each (non-maximal) point has a (single) point successor. The
yields of local 1-dimensional structures have cardinality less than or equal to
one. In essence, they are pairs of points. In following paths from the root,
at each point there is at most a single successor from which to choose. If we
represent that choice as ‘1’ then string addresses are sequences of ‘1’s in which
the length of the address of a point is just its depth. Then the canonical rep-
resentation of a composite domain is a prefix closed set of sequences of ‘1’s,
with the root at address . If we interpret these sequences of ‘1’s as unary
numerals we get that the canonical domains of the composite structures are
initial segments of N with the root at address ‘0’. These are the structures
studied by Biichi and by Elgot.

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

11 / ((2), (0))

(), (1))
(1), (0))

Fig. 6. A 3-dimensional tree domain.

The second level is the class of tree domains of Gorn [15] (Figure 5). Here
each point has a set of successors (in the 2°¢ dimension) which form a (pos-
sibly empty) string domain (ordered in the 1 dimension). Hence, the local
structures are depth-1 ordered trees: a root and its set of children (as a se-
quence of points). Now at each point in a path from the root of a composite
structure one has a choice of any of the successors of that point. We will repre-
sent that choice by its string address in the yield of the local structure. Thus,
tree addresses will be sequences of string addresses: second-order sequences of
‘l’s, and canonical tree domains will be sets of these second-order sequences
which are hereditarily prefiz closed in the sense that they are prefix closed
wrt the top level sequences and, for every second-order sequence s, the set of
first-order sequences w such that s - (w) is in the set is also prefix closed. ?
At this two-dimensional level, the notion of hereditary prefix closure simply
requires the addresses of the children of a point in the set to be a properly
formed (prefix closed) string domain. If we understand the ™" element of the
string of children of a point to be its i successor we obtain the structures
studied by Doner, by Thatcher and Wright, and (admitting infinite sequences
of children) by Rabin.

This process iterates. The local structures at level d+1 are formed by adding a
(d + 1)** -dimensional root to an arbitrary composite d-dimensional structure,
the domain of which forms the set of its successors in the (d + 1)** dimension
and the canonical domains of the composite (d + 1)* -dimensional structures
are hereditarily prefix closed (d+ 1) -order sequences of ‘1’s. At the third
level the local structures are pyramidal with the root at the apex and the tree
of its successors forming the base (Figure 6). For convenience, we will refer to
the set of all d*® -order sequences of ‘1’s as: 1.

2 Here ‘- represents concatenation, which we will always take to be an operation
on sequences of the same order. In general, we will use s, ¢, etc. and w, v, etc. in
this way, with s denoting sequences of the next higher order than w. We will also,
occasionally, use p, g, etc. to denote sequences of the next higher order yet.

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

Adopting the terminology of the second level, we will refer to a structure in
the d'™ -dimensional level of this hierarchy as a d-dimensional tree domain,
denoted Td, with the set of all Td being denoted T¢. The depth of a Td (in
its major dimension) is the length of the longest sequence it includes (just the
length of the top level sequence, independent of the length of the sequences
it may contain). We will refer to the set of yields of the local structures com-
prising a Td as the set of its ((d — 1)-dimensional) child structures. We will
refer to the set of all child structures (in any dimension) occurring in a Td as
its set of component structures.

The branching factor of a Td at a given dimension is one plus the maximum
depth of the component structures it contains in that dimension. The (overall)
branching factor of a Td is the maximum of its branching factors at all dimen-
sions strictly less than d. In a T3, for example, the branching factor is one plus
the larger of the maximum depth of the trees it contains and the maximum
length of the strings it contains. A Td is n-branching iff its branching factor
is no greater than n.

For any alphabet X, a Y-labeled Td is a pair (T,7) where T is a Td and
7 :T — 3 is an assignment of labels in . to the nodes in 7. We will denote
the set of all X-labeled Td as T%. We will denote the set of all 3-labeled,
n-branching, Td as T’

3 wSnTd

We are now in a position to build relational structures on d-dimensional tree
domains. Let T¢ be the complete n-branching Td—that in which every point
has a child structure that has depth n in all its (d — 1) dimensions. Let

f
T de (T, <3)1<i<d

where, for all z,y € T/%:

quygyzx-(@
vty & a=p-(s)and y=p-(s- (w))

quygizp.@.(...(w)...)) andy=p-(s- (- (w-1)--))

(which is to say that = <; y iff = is the immediate predecessor of y in the
i -dimension).

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

The weak monadic second-order language of T¢ includes constants for each of
the relations (we let them stand for themselves), the usual logical connectives,
quantifiers and grouping symbols, and two countably infinite sets of variables,
one ranging over individuals (for which we employ lowercase) and one ranging
over finite subsets (for which we employ uppercase). If o(x1, ..., 2., X1, ..., Xnn)
is a formula of this language with free variables among the z; and X, then
we will assert that it is satisfied in T¢ by an assignment s (mapping the ‘z;’s
to individuals and ‘X;’s to finite subsets) with the notation: T¢ |= ¢ [s].

The weak monadic second-order theory of T¢, denoted wSnTd, is the set of
all sentences of this language that are satisfied by T¢. (wS1T1 is equivalent
to wS1S in the sense of interinterpretability, as is wS1Td for all d. wSn'T2 is
interinterpretable with wSnS for all n > 2.)

A set T of ¥-labeled Td is definable in wSn'Td iff there is a formula ¢, with
free variables among Xr (interpreted as the domain of a tree) and X, for each
o € ¥ (interpreted as the set of o-labeled points in T'), such that

(T, €T <= T E o, [Xr =T, X, = {p|7(p) = o}.

4 Td Grammars and Automata

Mimicking the development of multi-dimensional tree domains, we can define
automata over labeled Td as a generalization of automata over labeled tree
domains which, in turn, can be understood as an analogous generalization
of ordinary finite-state automata over strings (labeled string domains). A Td
automaton with state set () and alphabet ¥ is a finite set:

d d—1
AT CExQx Ty .

The interpretation of a tuple (o,q,7) € A? is that if a node of a Td is
labeled ¢ and 7 encodes the assignment of states to its children, then that
node may be assigned state g. This is a “bottom-up” interpretation. There
is an analogous “top-down” interpretation, but for all d > 2 automata that
are deterministic under the top-down interpretation are strictly weaker than
those that are non-deterministic, while those that are deterministic under the
bottom-up interpretation are equivalent to the non-deterministic variety. It
should be emphasized that the only place the distinction between top-down
and bottom-up arises is in the definition of determinism. These automata are
interpreted purely declaratively, as licensing assignments of states to nodes.

A run of a Td automaton A on a ¥-labeled Td T = (T,) is an assignment
r: T — @ of states in () to nodes in 7" in which each assignment is licensed by

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

A. Note that this implies that a maximal node (wrt to the major dimension)
labeled o may be assigned state g only if there is a tuple (o, g,) € A? where ()
is the empty T(d—1). If we let Qy C @ be any set of accepting states, then the
set of (finite) X-labeled Td recognized by A, relative to Q, (denoted A(Qy))
is that set for which there is a run of A that assigns the root a state in Q.

Let Ch(T, s) def {we @ N1|s-(w) €T} and

(o) lon(T, 5) B (OR(T, 5), w s (s~ (w)) | w € Ch(T,5)}).

That is, Ch(T,s) is the T(d — 1) yield of the local Td rooted at s in T and
(T,r) |Ch(T) the corresponding Y-labeled T(d — 1).
Then

A(Qo) def {T =(T,7) | T finite and there exists r : T — @ such that

r(¢) € Qo and for all 5 € T, (7(s),7(s), (T,7) [ch(T, 5)) € A}-

Definition 1 A set of Y-labeled Td is recognizable iff it is A(Qo) for some
Td automaton A and set of accepting states Q.

Similarly, a Td grammar over ¥ is a finite set:

GEC T x TE .

and

G(So) X (T = (7, 7) | T finite , 7(¢) € %o, and
for all s € T, (7(s),(T,T) |Ch(T, s)> € g}

Note that T2 grammars are, in essence, CFGs viewed as sets of local trees
rather than sets of productions, generalized slightly in that there may be
multiple start symbols and the terminals (those members of ¥ licensed to
label nodes maximal in the major dimension) may be rewritten.

Definition 2 A set of X-labeled Td is local iff it is G(3g) for some Td gram-
mar G and set of start symbols .

As is well known from the 1- and 2-dimensional levels [16,17], the recognizable
sets of Td are exactly the projections of the local sets of Td. That is, if T,
a set of X-labeled Td, is A(Qy) then it is m(G(X X Qo)) where G is the Td
grammar over X X () in which the states of the runs of A explicitly label the
Td.

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

Lemma 3 ([16,17]) A set of X-labeled Td is recognizable iff it is a projection
of a local set of I'-labeled Td, for some .

4.1 Uniform Properties of Recognizable Sets

The strength of the uniform definition of T'd automata is that many, even most,
properties of the sets they recognize can be proved uniformly—independently
of their dimension. For instance, a T'd automaton is deterministic with respect
to a branching factor n (in the bottom-up sense) iff

(Vo e S, T € Tg" 1)(3g € Q)l(o,4, T) € Al.

(The quantifier 3! should be read “exists exactly one”.)

It is easy to show, using a standard powerset-construction, that (bottom-up)
determinism does not affect the recognizing power of Td automata of any
dimension. Given 4 C ¥ x @) X Tg’d_l, let
ic d-1 _
ACYE xP(Q) x TH’P(Q)
{{o,Q1, (T, 7)) |1 € Q, T: T = P(Q),
1€ Q1 (3r:T = Qo0 (T,7)) € AA (Va € T)lr(x) € 7'(x)]]}

and

Qo dZGf{QiQQ|QiﬂQ07é®}-

It is easy to verify that A is deterministic and that A(Qo) = A(Qy). More im-
portantly, while the dimension of the Td automaton parameterizes the type of
the objects manipulated by the proof, it has no effect on the way in which they
are manipulated—the proof itself is essentially independent of the dimension.

Similar uniform proofs can be obtained for closure of the class of recogniz-
able sets under projection, cylindrification, and Boolean operations and for
decidability of emptiness.

4.2 A Muyhill-Nerode Characterization

Theorem 4 Suppose T C T¢. For all T1,T; € T, let Ty =t Ty iff, for every
tree T € T¢ and point s in the domain of T, the result of substituting T, at s

10

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

in T is in T iff the result of substituting Ty is. Then T is recognizable iff =r
has finite indez.

In the one-dimensional case =7 is the Nerode equivalence for the reversed
language. The characterization, in the two dimensional case, is well known
as well [18]. Again, the proof at all levels is a simple lift of the proof at the
one-dimensional level: in one direction it follows nearly immediately from the
finiteness of the set of states, in the other it is based on a construction of an
automaton using T¢ /ET as the set of states.

5 Definability and Recognizability

It should be reasonably clear that the recognizable sets of Y¥-labeled Td are
definable in wSn'T'd. One encodes each production of the automaton recogniz-
ing the set as a formula in the language of wSnTd, with free variables for ¥
and @), which will be satisfied at the root of a local tree by an assignment s iff
the assignment labels it (in the same sense as in the definition of definability)
consistently with that production. One then combines these into a formula re-
quiring every point in the domain of the tree to satisfy one of these formulae.
Finally, one hides the states by existentially binding them.

The proof that every wSnTd definable set of ¥-labeled Td (for finite n) is
recognizable is, yet again, a direct lift of the corresponding proofs at the 1-
and 2-dimensional levels [1-4]. One first reduces to a language in which only
set variables occur and the only predicates are subset and predicates for the
relations between singleton subsets corresponding to immediate domination in
the various dimensions. Then one defines automata for each of these predicates.
The extension to arbitrary formulae is obtained from the constructions of the
proofs that the class of recognizable sets is closed under Boolean operations
and (for existential quantification) projection.

Theorem 5 A set of Y-labeled Td is recognizable iff it is definable in wSnTd,
for some n < w.

From a practical perspective, the most attractive aspect of this result is the
fact that the proof is constructive: it provides effective means of translating
arbitrary sets of formulae in the language of wSnTd with free variables in X
into Td automata that license exactly the set of ¥-labeled Td that satisfy the
formulae. Hence, we can define sets of 3-labeled Td in terms of highly abstract
logical constraints and employ the construction of the proof to translate these
into automata that can be processed relatively efficiently.

The weakness in this plan is the extraordinary conciseness of the logical for-

11

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

mulae in terms of the size of the corresponding automata. As Meyer [19] has
pointed out, the size of the automata generated by the construction is non-
elementary in the size of the formulae—the number of states is proportional
to a constant raised to a stack of exponents the height of which is proportional
to the number of quantifier alternations in the formula (a constant tetrated
to the number of alternations). Consequently, it is easy to describe sets which
are infeasible in the sense that the automata that recognize them are of im-
practical size (and take an impractically long time to build) regardless of their
dimension. This has been one of the main limiting factors in application of
these results at any level and the problem of how to identify classes of formu-
lae that are impractical to implement is very much still an open issue. We will
have more to say about this in the final section of the paper.

6 Yields of Higher Dimensional Structures

So far, our Td grammars and automata define only sets of ¥-labeled Td. We
obtain a string language from such a set by applying a yield operation d — 1
times. Given 7, a ¥-labeled Td we would like the yield of T to be the T(d—1)
obtained by restricting 7 to its maximal points with respect to <4. For the T2
case this is straightforward, but for the higher-dimensional cases we need to
specify the way in which the yield of the structure dominated by a node in the
d"™™ dimension splices together with the yield of that node’s children in the
(d —1)** dimension. In Figure 6, for instance, the issue is whether ((1,0)) and
((1,1)) should be the children of ((1),(0)) or ((1), (1)) in the two-dimensional
yield.

Our approach is to distinguish a unique node in the frontier of the yield of
each (d — 1)-dimensional component, its foot, which will serve as the “splicing
point” for the yields. We distinguish the foot by extending our structures with
d distinguished subsets Hi,..., H;. Each H; is required to pick out exactly
one child of each non-empty local T% in the structure—the head of that Ti.
Then, in each Td, there will be a unique sequence of points in Hy forming a
path from the root to a node on the frontier. We will refer to this path as the
(principle) spine of the structure. The foot will be the maximal point of the
spine.

6.1 X-Labeled Headed Td

Given a suitable selection of such H; we will be able to extend each <; to a
domination relation < that is preserved under the yield operation. We can
then adopt, as our models, headed Td—relational structures based on <;" rather

12

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

than <;—in which case the (d —1)-dimensional yield of a Td T will just be the

reduct to <, i < d of the restriction of 7 to its maximal elements wrt < .

Definition 6 A Y-Labeled Headed Td is a structure:

T = <T7 <];|_a Ri; Hi; PU>1§i§d,GEEa

where the components are defined in the remainder of this section.

Our goal in this section is two-fold: first to define the class of structures we
have in mind and, second, to demonstrate that they form a wMSO definable
class of ordinary Y-labeled Td. Towards the first goal, we define the intended
interpretation of the predicates <", R;, and H;, 1 < i < d. Towards the second,
we show how each aspect of these definitions can be expressed as wMSO
formulae over the signature of T¢ (employing the the defined predicates as
they become available). The result is a set of axioms which can be adjoined to
the definition of a set of X-labeled headed Td transforming it into a definition
of aset of XU {H;, R; | 1 <i < d}-labeled ordinary Td.

The domain, 7, is a d-dimensional tree domain: T € T<.

The R; are the sets of roots of i-dimensional constituent structures of 7—
the minimal points wrt <;. There is a single root in R; and one root in R;
for each i-dimensional component structure. In Figure 6 R3 = {e}, Ry =

{(e), ((1),€), ((2), &)} and Ry = {{(0)), ((1,0)), (1), (0)), ((2), (0))}. In gen-

eral, R; is the set of all addresses that end in an empty " -order sequence:

xERdgxza

x € Ry g r=p-{e), pad®-order sequence ,

T=c ifd=1,
xeRHd:eg r=p-(s-{--w-()---))

Y

w a 2" -order sequence, otherwise.

As with the other components of our structures, we employ R; both as a
monadic predicate and to denote its interpretation in the structure. The in-
tended interpretation of the R; is, of course, wMSO definable:

Ri(z) & (Vy)[-y < z].

Hence, in translating definitions of sets of ¥-labeled headed Td into definitions
of sets of ordinary labeled Td we can take the R; to be existentially bound

13

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

second-order variables with their satisfying assignments restricted by adjoining
these formulae to the definition.

In defining the intended interpretations of the H; and <" we will employ
auxiliary relations <; denoting proper domination in the i*® -dimension (the
irreflexive transitive closure of <;) within an i-dimensional component:

1y &L y—z.p pte
xad_lygaﬁ:p-(s) andy=p-(s-t),t#e¢

xalygx:p-(s-(--(w)---)) and

y=p-(s- (- {w-v)--)),velr.

Note that these relations are wMSO definable by the formulae:

z <y = (VX)[(X(y) A Va1, 22)[(X(21) A 22 < 21) = X(22)]) = X ()]

Which requires every subset of the domain that both includes y and is down-
ward (i.e., “root”-ward) closed wrt <; to include = as well. Hence, we may
employ the <; without extending the descriptive power of wSn'Td, simply by
taking the relations to be syntactic shorthand for the corresponding defini-
tion. 3

The points in the H; are required to be distributed such that there is exactly
one member of H; in the yield of each non-empty local i-dimensional structure.

(VO)[(3s)[t < s] = (Tls)[H;(s) At <; s]].

Referring, again, to Figure 6: H3 must include exactly one point from each of

the sets {(e), ((0)), ((1)), {(2)), ({1, 0)), ({1, 1))}, {((1), &), ((1), (0)), {{1), (1)}
and {((2),¢), ((2),(0))}; Ho must include exactly one point from each of

the sets {((0)), ((1)), {((21)}, {((1, 0)), ({1, 1))}, {{{1), (0)), {1}, (1))} and from

{({(2),(0))}; and H; must include exactly one point from each of the sets

{(N} @)} {110}, and {{(1), (1)}

3 We will generally distinguish explicit definitions of this sort by using ‘=’. All
new non-monadic predicates must be explicitly defined in this way. In contrast, new
monadic first-order predicates may be implicitly or even inductively defined (as we
do here) since all such predicates are MSO definable. More precise definitions of
these varieties of definability along with proofs of their relationships with MSO
definability can be found in [9].

14

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

It is worth noting that H; is disjoint from all R;, j7 > 4 since the points
in R; are not in the yield of any local T%. On the other hand, H; may well
include points in R; for j <4 and, in fact, we will shortly further restrict the
interpretation of the H; to require the i-dimensional heads to be chosen from
among the j-dimensional roots and particular subsets of the j-dimensional
heads for 7 =7 — 1. Note, also, that there is no freedom in the interpretation
of H;—there is but a single point in the yield of any local T'1.

By requiring each non-trivial local T7 to have a single point in its yield distin-
guished by inclusion in H; we ensure that there is a unique sequence of points
in H;, ordered by <;, leading from a given point to a leaf of the -dimensional
component containing it. We will refer to such a sequence as a spine. The set
of elements of the spine extending from a point ¢ in 7 is:

sp,(t, 7) €t (1)U

{s € H; |tJ; sand (V&)[(t<; s and §' J; s) = §' € H;l}.

The principle spine of an i-dimensional component structure is the spine
starting at its root. The auxiliary predicate PSP; picks out points on some
i-dimensional principle spine:

PSP;(z) L& (3y € R))[z € SPi(y, T].

Again, this is wMSO definable:

Hi(z) AN (Fy)[Ri(y) Ny < 2 AN(V2)[(y < z A 2 <) = Hi(2)]])-

The restrictions that we have placed on the interpretation of the H; so far
suffice for their primary purpose—to pick out principle spines. For technical
reasons (having to do with persistence of heads under various restrictions of
the structures) we further constrain the 7*® -dimensional head of each local
structure to fall on the principle spine of its child structure.

H;p C U [SP;(r, T)],

reER;

which is to say,

15

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

1,1)
"ﬁ)
(@, (o)

Fig. 7. Another 3-dimensional tree domain.

As there is only a single sequence of points in any 1-dimensional structure we
need no further constraint on the interpretation of H;. In fact, it is easy to
see that the H; are just all points that are not roots in any dimension, i.e.,

Hy =T\ Ui<i<a[Ri)-

With such a distribution of H; we can extend the <; throughout the struc-
ture in a way that will be preserved by the process of restriction to maximal
points. This requires those relationships in which a point is dominated in a
dimension ¢ to be inherited by all points it dominates in dimensions greater
than 4 and those relationships in which it dominates in dimension 7 to be in-
herited by those points it dominates in dimensions j greater than ¢ provided
those points are on k-dimensional principle spines for some 1 < k < j. In Fig-
ure 7, for example, (where heads have been marked by broadening the edge
between them and their parent) we want the domination of ((1)) by (&) (in
the second dimension) to be inherited by its descendants in the third dimen-
sion: ((1),¢), ((1),(0)), {(1), (1)), {(1),¢,€), ((1),¢,(0)) and ((1),¢, (1)); and
the the fact that ((1)) dominates ((1),(1)) (in the second dimension) to be
inherited by ((1),¢), {(1),(0})), ((1),¢,¢), and {{1),¢, (1)) but not by ((1), (1))
or {(1),&,(0)). Similarly, we want the domination of {{(1)) by ((0)) (in the first
dimension) as well as the fact that ((1)) dominates ((2)) (in the first dimen-
sion) to be inherited by all of its descendants in the second or third dimension:
those above plus ((1,0)) and ((1,1)). None of these descendants are excluded
since they are all on either 1-dimensional or 2 dimensional principle spines.

In the major dimension:

qu‘jygaﬁady

16

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

and, for each 1 <7 < d, < is the least relation on T satisfying:
TRy =>x <IZT" Y
Gy, i<j<dzr< yrandy < yl=z<y
(321, i < j < d)[z; < z and z; < y and
(Vz)[z1 < z and 2z < 2 = (Fi < k < j)[PSPL(2)]] =

+
./E<]iy

where

:c<1;‘-y<d:e§x%yor:c<1;“y.
Again, these are monadic second-order definable relations (by defining a suit-
able class of paths).

Note that the interpretation of H; and the R; is fixed by T, as is J; and <}, but,
for all 7 > 1 the interpretation of H; depends on the choice of H;, j < 7 and for
all ¢ < d the interpretation of <; depends on the choice of the H;, 1 < j < d.

Again, the reason for using this structure is that we can now pick out the yield
of a T as, roughly, a reduct of a substructure of it. To facilitate that, we will

relax the definition to allow structures with arbitrary domains so long as they
are isomorphic (wrt the <;) to a X-labeled headed Td.

6.2 The Yield Operation

We can now formally define the i-dimensional yield of a set of ¥-labeled headed
Td. Let the d*" -dimensional image of a point include that point plus the set
of all points in the sequence of (d — 1)-dimensional roots, ordered by <, it
dominates in the d"" -dimension:

Image,(z) dlef {y |z <}y and (V2)[z <} z and 2z <} y = Ry 1(2)]]}-

In Figure 7, for example,

Image,(((1))) = {{(1)), ({1}, &), {{1),&,€)}.
Let Image,(X) = U,ex [Image,(z)].

17

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

The (d—1)-dimensional yield of a Td, T, is the set of its maximal points wrt <}
ordered by <} ,,...,<{. The (d — 1)** -dimensional root of this structure is the
maximal point, wrt <, in the d" -dimensional image of the d'" -dimensional
root of 7—which is just the sole point in the intersection of that image and
the domain of the yield—and the roots of the constituent structures are the
maximal points in the d*® -dimensional images of the roots of its corresponding
constituent structures. We extend this to the heads as well: each H; will be
maximal points, wrt < of the d"* -dimensional images of the H; of T.

Definition 7 the i® -dimensional yield, for each 1 < i < d, of a L-labeled
headed Td T = (T, <}, R;, H;, P)1<i<dpex 1S
def .
Yield,(T) —f<TZ, <t R HY, Pli<j<ioes

defined as follows.
Fori=d—1:

-1 def {z € T'| = is maximal wrt < }.

Ri-1 def Image,(Ry) N T L.

RV page (R) N T, j<d—1.
4 age, () T4, < d—1.
pi-t 4 p et

For1<i<d-—1:

def

Yield)(T) = Yield,,, (Yield; (7).

Let

Yield;(T) = {Yieldy(T) | T € T}
Lemma 8 Yield,(Yield,(T)) = Yield,(T)).
This is immediate from the definition.

Note that, while the ¥-labeled headed Td are just a definable class of ¥-labeled
Td, it is not the case that Yield}(T) is, in general, a definable set of ¥-labeled
T4. It is not difficult to show, for instance, that the string language

{didh---aba—s | i > 1}

18

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

is Yield}(T) for some T, a recognizable set of Td, but is not Yield;(T) for
any recognizable set of T7 for i < d (and, in particular, for d > 1, is not a
recognizable, hence definable, set of strings).

6.3 2-Branching Normal Form

A Td grammar or automaton is in 2-branching form if the branching factor
of each of its local Td is no greater than two. We can convert an arbitrary
grammar or automaton into 2-branching form by iterating the familiar CNF-
style transformation through each of its dimensions. As these transformations
only add points that are non-maximal wrt the < and as they preserve the
order of the original points wrt <, they do not affect the one-dimensional
yield.

Lemma 9 A set L C ©* is Yieldy(T) for T, a set of X-labeled headed Td,
iff it is Yieldy(T') for T', a set of Z-labeled headed Td that is in 2-branching
form.

6.4 FEquivalence of Yields of Local and Recognizable Sets

Lemma 3 establishes the equivalence of local and recognizable sets modulo
a projection. The proof hinges on the fact that the distinction between local
and recognizable sets is solely due to the state information that is hidden in
the recognizable sets; if this is made explicit as a component of the label,
then recognizable sets become local. The projection simply strips this state
information from the labels. As it turns out, in this construction there is no
need to add state information to the labels of the maximal points. Hence,
when dealing with the yields of these sets of structures we have a stronger
result:

Lemma 10 A set of X-labeled Td is the yield of a recognizable set of labeled
Ti, for some i > d, iff it is the yield of a local set of labeled Ti.

In the two-dimensional case, this just says that string languages yielded by the
recognizable and local sets of trees coincide—they are just the CFLs [17,3].

7 wSnT3 and Tree-Adjoining Grammar

As noted above, the T2 grammars are equivalent to CFGs (with some mild
generalizations) and the T2 automata are just finite-state tree automata. In

19

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

A | I

DP N V Somewhere outside was

-

D dog barking
|

a

Fig. 8. TAG elementary trees.

general, the process of concatenating local d-dimensional structures that is the
underlying mechanism of the grammars and automata can be viewed, from
the perspective of the (d — 1)-dimensional yields, as a process of replacing a
point—the root of the local Td—with a T(d — 1)—the yield of the local Td.
Thus, the concatenation of local trees corresponds to the substitution of strings
for symbols—the string rewriting that is characteristic of Context-Free Gram-
mars. At the 3-dimensional level, we have a corresponding process of substi-
tuting trees for nodes in trees, a particular form of context-free tree-rewriting.
This process is the characteristic operation of Tree-Adjoining Grammars.

7.1 Tree-Adjoining Grammars

Definition 11 A TAG [20-22] is a five-tuple (3, N, I, A, S), where:

> s the terminal alphabet,

N is the non-terminal alphabet, N N = (),
S is the start symbol, S € N,

I is a finite set of initial trees and

A is a finite set of auxiliary trees.

Every non-frontier node of a tree in I U A is labeled with a non-terminal.
All frontier nodes are labeled with terminals with the exception that every
tree in A has exactly one frontier node that is labeled with a non-terminal,
its foot. This must be labeled with the same non-terminal as the root. The
auxiliary and initial trees are distinguished by the presence (or absence, re-
spectively) of a foot node. Together the initial and auxiliary trees are referred
to as the elementary trees of the grammar. An example set of elementary trees
is illustrated in Figure 8.

Derivation, in TAG, proceeds by a process of adjunction (see Figure 9) in
which a node in one tree (the node at address 7 in the tree v of the figure) is
replaced by an auxiliary tree (5 in the figure) by cutting out the subtree rooted
at that node, attaching the auxiliary tree in its stead, and then attaching the
excised subtree at the foot of the auxiliary tree. There is a clear parallel, here,

20

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

v: 7‘

é?n)

AN

Fig. 9. Adjunction in TAG.

to context-free rewriting in strings. It differs from the general context-free
tree rewriting of Rounds [23] in that all children of the rewritten node are
attached as the children of a single node of the auxiliary tree with their order
and number preserved.

In the original notion of TAG, all initial trees are rooted at a node labeled
S. In Lexicalized-TAG, initial trees may be rooted in any non-terminal, non-
terminals may occur anywhere in the frontier of the elementary trees, and
there is a second combining operation, substitution in which an initial tree is
attached at a non-terminal in the frontier of another tree. As substitution can
be reduced to adjunction, we will restrict our attention to adjunction only,
but we will admit initial trees rooted in non-terminals other than S. While
derivations will involve a single initial tree, the derived structures may be
partitioned into classes based on the label of the root of that tree.

In its pure form, the TAG derivation process is controlled exclusively by the
labels of the nodes: an auxiliary tree may adjoin at a node iff its root bears the
same label as that node. In practice, finer control is necessary and nodes may
be associated with various adjoining constraints. A null adjoining constraint
(NA) forbids adjunction at a node. An obligatory adjoining constraint (OA)
requires it. A selective adjoining constraint (SA) is a set of names of auxiliary
trees enumerating those which may be adjoined at that node. Note that NA
constraints are subsumed by empty SA constraints.

Most linguistic uses of TAG employ a variation known as Feature Structure
Based TAG (FTAG) [24] in which, rather than adjoining constraints, nodes are
associated with feature structures (drawn from a finite set). These serve both
to associate linguistic information with the node and to restrict the derivation
process. The root and foot of auxiliary trees are each associated with single
feature structures. Internal nodes are associated with two feature structures,
a top and a bottom feature structure. In adjunction, the feature structure
labeling the root of the auxiliary tree is required to unify with the top feature
structure labeling the node of adjunction and the feature structure labeling
its foot is required to unify with the bottom feature structure.

21

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

Selective adjoining constraints are realized by compatibility of the feature
structures under unification. In the final derived structure the top and bot-
tom feature structures of each node are required to unify. Thus, obligatory
constraints can be enforced by labeling a node with incomparable top and
bottom feature structures. Finally, null adjoining constraints can be realized
by labeling a node with feature structures that fail to unify with any of those
labeling the roots and feet of the auxiliary trees or by labeling the node with
just a single feature structure, in essence unifying the top and bottom feature
structure and blocking the adjunction mechanism.

7.2 Non-Strict TAGSs

Having moved, now, to a mechanism in which the derivation process is con-
trolled by the features of the nodes, it is no longer clear why the non-terminal
labeling a node should have distinguished status. The requirement that the
root and foot of an auxiliary tree be labeled with the same non-terminal and
that it can only adjoin into similarly labeled nodes can be seen as a linguis-
tic stipulation expressing the intention that auxiliary trees represent recursive
fragments of phrase-structure trees—constituents that contain constituents of
the same type. Similarly, one can view the feature-structure based restrictions
as expressions of the linguistic analysis the grammar is intended to capture.
For our purposes, it is useful to abstract away from these stipulative details.
We will assume a fully general version of TAG in which the association between
auxiliary trees and the nodes they may adjoin to is completely arbitrary.

Definition 12 We will say that a TAG is non-strict if it permits the root and
foot of auxiliary trees to differ in their label and to differ from the label of the
nodes to which they may adjoin.

Here we do not interpret the notion of label at all. All restrictions on adjunc-
tion must be expressed by explicit associations of some sort between the labels
of nodes and the auxiliary trees which may adjoin at that node. Unless stated
otherwise, we will assume these are stated as SA and OA constraints.

In non-strict TAGs (without substitution) there is no longer any meaningful
distinction between terminals and non-terminals. Every internal node is la-
beled with a non-terminal, every leaf is a either a foot (in which case it is
labeled with a non-terminal) or it is labeled with a terminal—the roles of the
symbols can be unambiguously determined from the properties of the node
they label. Thus, we can treat the fact that some labels represent elements of
the target lexicon while others represent syntactic categories as an aspect of
the theory of syntax a given grammar embodies and we will not distinguish
terminals from non-terminals.

22

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

Under these circumstances, there is also no longer any reason to distinguish
initial and auxiliary trees. While auxiliary trees are required to have foot
nodes, since foot nodes are no longer required to be labeled with non-terminals
there is no reason to prohibit initial trees from having foot nodes as well. The
distinction between the roles of the trees is determined by the start symbol
and the SA constraints. If a tree’s root is labeled with the start symbol it
may play the role of an initial tree. If it is named in an SA constraint, it
may play the role of an auxiliary tree. Again, the fact that initial trees are
intended to capture the minimal non-recursive structures of a language and
the auxiliary trees are intended to capture minimal recursive structures can
be seen as a stipulation that expresses an aspect of the intended theory of
syntax the grammar embodies.

Finally, as the start symbol now serves only to pick out the set of permissible
initial trees, we can drop it in favor of designating the (permissible) initial
trees as a distinguished non-empty subset of the set of elementary trees. This
is a generalization as it admits any non-empty finite set of start symbols,
with the tree set and string language generated by a TAG with multiple start
symbols being the union of those of the TAGs employing the start symbols
individually. As both the TAG tree sets and the TAG string languages are
closed under finite union, this does not change the generative capacity in any
way.

Putting all this together, we will take a non-strict TAG to be simply a a
pair (E,I) where E is a finite set of elementary trees in which each node is
associated with:

e a label—drawn from some alphabet,

e an SA constraint—an arbitrary subset of the set of names of the elementary
trees, and

e an OA constraint—Boolean valued

and I C F is a distinguished non-empty subset, the initial trees. As every
elementary tree named in an SA constraint is required to have a designated
foot node, we will assume that each elementary tree has such a node.

7.8 Derwation Trees

A TAG derivation tree is a record of the adjunctions made in the course of
a derivation. Its root is labeled with the name of an initial tree; all other
nodes are labeled with a pair consisting of the name of an auxiliary tree and
an address in the tree named in the parent of the node. In Figure 10, for
instance, using the trees of Figure 8 and taking the derivation bottom-up:
Bo adjoins into f; at address (0) (or (€)), the resulting derived auxiliary tree

23

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

ai . /\ : o

VAN g AT S
(1,8 (Bs, (1)) D Ad/\Ad ' Np/>p%_ }
= N s ;P N
TAG :Somewheml outside ! :DP N 'V VP:

(82,(0))

B ‘
AR :D dog ;77{)“75,; v
|
e

barking

Fig. 10. Derivation and derived trees.

adjoins into oy at the root, and 3 adjoins into «; at address (1).

As Weir [25] has pointed out, these derivation trees are context-free. In our
case, in which the TAG is non-strict, a node (8, w) may be a child of another
node (v, v) iff the SA constraint associated with w in v admits 3; and if the
address w in 7 is associated with an OA constraint then any node labeled
(v, v) is required to have a child labeled (8, w) for some g.

The derived tree is obtained from the derivation tree by a yield operation which
simultaneously applies the specified adjunctions. The tree set generated by a
TAG G, denoted T(G), is the (tree) yield of the derivation trees it licenses.
The string language of G, denoted L(G), is the string yield of that tree set.

7.4 FEquivalence of T3-Automata and Non-Strict TAGs

The equivalence of T3-automata and non-strict TAGs can be established
by straightforward constructions—in essence, SA constraints and states have
roughly equivalent power. In the following section we will sketch the inter-
pretation of an FTAG grammar in wSnT3. As definability is equivalent to
recognizability and the feature system of FTAG is at least as powerful as any
of the other systems of adjoining constraints, this serves to establish that every
TAG tree set is the two-dimensional yield of a recognizable set of Y-labeled
T3.

In this section we will sketch the construction of a non-strict TAG with explicit
SA and OA constraints which derives the two-dimensional yield of a local set
of Y-labeled T3. As a set of X-labeled Td is the yield of a local set iff it is
the yield of a recognizable set (Lemma 10) this will establish that every set of
trees that is the yield of a recognizable set of 3-labeled T3 is a TAG tree set
for a non-strict TAG with, at least, SA and OA constraints. Together, these
give us our central theorem:

Theorem 13 A set of X-labeled trees is the yield of a recognizable set of X-
labeled T3 iff it is generated by a non-strict TAG with adjoining constraints.

24

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

Proof (of the forward direction) To show that the tree yield of a recogniz-
able set of X-labeled T3 can be generated by a non-strict TAG, as we noted in
the introductory remarks of this section, it suffices to show how to construct
a TAG generating the tree yield of a local set of ¥-labeled T3. Suppose, then,
that

T = Yield;(G(Xo))

for some T3 grammar G and set of initial labels ¥,. We will construct a non-
strict TAG Gg = (Eg, Ig) with SA and OA constraints such that T is T(Gg).

Let Gg be a non-strict TAG with elementary tree set:

Eg def {T | {0, T) € G, for some c}.

The foot of each T € Eg is just the maximal point of its principle spine.

For each 7 = (T,7) € Eg and each w € T, let

SA iy T | (r(w), T') € G},

and let

Which is to say that the SA constraint of w in 7 includes every tree that is
the yield of a local T3 in G with root labeled the same as w and that the w
in 7 which bear obligatory adjoining constraints are just those which are not
licensed to be maximal.

Finally, let the set of initial trees of G be

I dlef {T | {0, T) € G, for some o € ¥y}.

The equivalence of Gg and G hinges on the fact that there is a direct corre-
spondence between the ¥-labeled T3 in G(3,) and the derivation trees of Gg
which is witnessed by a map that takes the local T3 of the one to the nodes
of the other. For any 7 = (T, 1) € G(30) and s € T let T, denote the local
tree rooted at address s of 7. This will have been licensed by some production
(1(s), (T, T>|Ch(T’ s)) € G. Let f map 7: to a node labeled (with the name
of) (T, T>|Ch(T, £) and, for each s-(w) € T, let f map T;.(w) to a node labeled

{T, T>|Ch(T,$ _ <w>),w). Finally let f(7;) be the parent of f(7.qw))-

25

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

Since T is a T3 (and, therefore, “treelike” in its third dimension) the image
of 7 under f forms a tree. Since the trees associated with the nodes in the
image of T under f are all component trees of 7, they are all included in
Eg, the elementary trees of Gg. Since T € G(X), each 7 is a local tree in G.
Consequently, for all s - (w), the (name of the) tree (T, T>‘Ch(T, s - (w)) will

be an element of SA 7, .w)- In other words, if a node is labeled (7", w)

len(T,s
in the image of 7 then the t(ree) T is licensed to adjoin into the tree associated
with its parent by the SA constraint associated with the node at address w in
that parent tree. Moreover, if 7,..,) is trivial (i.e., s - (w) is maximal wrt <)
then the OA constraint associated with w in the component tree containing it
is false. Finally, since the root of 7; must be labeled with a member of ¥ and
the root of the image of 7 under f is the image of 7, the root of the image

of 7 under f is labeled with (the name of) an initial tree of Gg.

In other words, the image of 7 under f is a derivation tree of Gg. A similar
analyses establishes that if a derivation tree of G is the image of a X-labeled
T3 T then T € G(X).

All that remains is to establish that the TAG yield of the f(7) is Yield3(7).
This is simply a matter of checking that their domains are equal and that
<4 and < in T are equal to proper domination and linear precedence in the
derived tree. The equality of domains follows from the fact that a point s- (w)
is maximal (wrt <3) in 7 iff f(7;) has no child labeled (77, w) iff no tree
adjoins at w in the tree associated with f(7) when taking the TAG yield.

The equality of the relations can be establish by analyzing the cases of the
definition of <. We will look only at <5 and proper domination. The analysis
for < and linear precedence is similar. If z <3 y then either:

e 1 <y y, in which case x and y occur in the same elementary tree of Gg with
x dominating y, or

e z < y; and y; <} y for some y; in which case x dominates y; (by induction)
and y occurs in an elementary tree which will eventually adjoin (possibly in
a derived auxiliary tree) at y;, or

e 7, <} v and z; <3 y for some z; and all z falling between z; (exclusive)
and z (inclusive) wrt < are on the principle spine of their component tree,
in which case = occurs in an elementary tree that will eventually adjoin at
x1 with dominating the root of that elementary tree (and that of every
intermediate derived elementary tree), and that root will dominate y (again
by induction).

O

It is important to recognize just how direct this construction is. In a very

26

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

a;: S, By : VP,

NPy VP Vo yp*

1
Vo NPy

Fig. 11. XTAG verb trees.

S Br: Y?

PN
BN

g :

- T

PRSI B ’ :
I

T e = NP / - ypr
L "

NPy |

Fig. 12. XTAG initial trees as local T3

strong sense the T3 grammar and the TAG are just alternate presentations of
the same object, with the local relationships of the grammar being expressed
in the SA constraints of the TAG. Moreover, the choice of grammars rather
than automata as a starting point is purely a matter of technical convenience.
The relationships expressed by the SA constraints are independent of the
labels of the nodes in precisely the same way that the ()-labeled local trees
of the automata are. In essence, states and SA constraints are equivalent
mechanisms; for all intents and purposes T3 automata and non-strict TAGs
with adjoining constraints are just notational variants.

8 TAG as Sets of Logical Constraints

The practical value of the fact that the tree and string languages definable
in wSn'T'3 coincide with the TAG tree sets and TALs is that we can define
our syntactic analysis in abstract logical terms and then compile them into
T3 automata, equivalently TAGs. As an example of how this works out, we
will look at capturing a fragment of an existing FTAG grammar, the XTAG
grammar of [26]. We will look, in particular at the handling of case assignment
in XTAG main verb (;) and auxiliary verb (3,) trees (Figure 11).*

The basic idea is to interpret node names as first-order variables and tree
names as monadic second-order variables with, e.g., a;(z) satisfied iff z is the

4 Here the nodes marked with | are substitution nodes; we will treat substitu-
tion simply as adjunction at a leaf. Those marked with ¢ are anchor nodes—
linguistically, each elementary tree is an extended projection of its anchor.

27

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

. VP ign- (1
‘ B VT pmmemy

a;: /i[(@]

< - - 4 \ ~
~ - - _ s ~ .

yp*

-7, N ~ - - \

PR N “"°°NP, | ,
7 / VP (\]0/[5;56: acc] : VP, o)
[assign-case:(3)] assign-case: assign-case:(1
[(%g] NPq | [assign-casei(1)] %assignfcaseﬁ?m] [assign-case:(2)] |
[assign-case:(3)] [case:(3

assign{;e:@)] Ea]ssign-ca.se:(li)]

[assign-case: nom

Fig. 13. Case assignment in XTAG.

(3™ -dimensional) root of the local T3 corresponding to as:

a(z) &
(38, npo, vp, v, NP1) [T <3 S, AT <3 NPy AT <3 VP A T <3 v AT <3 npr A
Miny(s,) A Maxg(npy) A Maxs(v) A Maxa(np;)A
Sr < npg A Sp <o vp A Hy(vp) A Ming(npg) A npe <1 vp A Maxy (vp)A
vp <y v Avp < np; A Hy(v) A Ming (v) A v <4 np; A Max; (np)A
Initial(z) A Anchor(v) A Subst(npg) A Subst(np;)]

Here Min; and Max; pick out minimal (root) and maximal (leaf) nodes wrt the
i'" dimension—these are defined predicates. Initial(x) is true at the root of
each local T3 encoding an initial tree, Anchor(z) is true at each anchor node
(we will ignore insertion of the lexical items), and Subst(z) is true at each
node marked for substitution—these are labels, in Y. It is possible to treat
substitution as concatenation of trees but simpler to treat it as adjunction. We
require all Subst nodes to have children in the 3' -dimension and require the
set of Initial nodes to be exactly the Subst nodes plus the root of the entire

T3:

(Vz)[Subst(z) — (Fy)[z <3 y]] (Vz)[Initial(z) <> (Subst(z) vV Ming(z))]

Figure 13 shows the distribution of features responsible for case assignment
in the XTAG grammar. Following the approach of [10] we interpret the paths
occurring in the feature structures decorating the trees as monadic predi-
cates: Y includes each sequence of features that is a prefix of a path occurring
in a feature-structure derivable in the grammar. We will refer to this set of
sequences as Feat. Each node is multiply labeled: the feature-structure asso-
ciated with it is the union of the paths labeling it. In order to capture the
distinction between top and bottom feature-structures we will prefix their
paths with ‘t” and ‘b’, respectively. We can then add to the definition of a:

(t : case : acc)(npr) A (b : assign-case : nom)(v).
This encoding of feature-structures as sets of paths gives us a straightforward

28

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

definition of predicates for path equations as well. For any sequences w,v €
Feat:

(w=v)z,y)= N\ [w:u)(@) < v:u)y).

w:u€Feat
or v:iu€Feat

With this we can add the re-entrancy tags:

(b : assign-case = t : assign-case)(vp, v)A
(b : assign-case = t : case)(s,, npo)A

(b : assign-case = t : assign-case)(s,,vp) A (b =t)(s, s;).

The labeling of the elementary trees can then be interpreted as a collection
of constraints on local T3, with the set of structures licensed by the grammar
being the set of T3 in which every node satisfies one of these collections of
constraints. Note that for a T3 in which the 8; T3 expands the VP node in
an a1 T3 to be licensed, the VP node must satisfy both the constraints of the
a1 T3 and the constraints on the root of the #; T3. Thus the top feature-
structure of the VP is unified with the top feature-structure of VP, and the
bottom feature-structure with the bottom feature-structure of the foot VP by
simple transitivity of equality. There is no need for additional path equations
and no extra-logical mechanisms of any sort; licensing is simply a matter of
ordinary model-theoretic satisfaction. To get the (default) unification of top
and bottom feature structures of nodes that are not expanded by adjunction
we add a single universal principle:

(Vz)[Maxz(z) — (t = b)(x, x)].

Taken literally, this approach yields little more than a fully declarative restate-
ment of the original grammar. But, in fact, a large proportion of the features
decorating elementary trees are there only to facilitate the transport of fea-
tures through the tree: there is no obvious linguistic motivation for positing
that “assign-case” is a feature of VPs or of S. In the language of wSn'T'3 there
is no need for these intermediate features or even any need to distinguish top
and bottom feature structures—we can state directly that the value of the
case feature of the subject NP, for instance, must agree with the value of the
assign-case feature of the verb. Of course, what is interesting about this re-
lationship is the effect of adjoined auxiliaries. The TAG analysis includes an
assign-case feature for the intermediate VP in order to allow auxiliary verbs
adjoined at the VP to intercept this relationship by interposing between the
VP’s top and bottom feature structures. In wSn'T'3 we obtain the same result
from the way in which we identify the relevant verb. For instance, if we take

29

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

it to be the last adjoined verb® —the one most deeply embedded in the third
dimension—we can add to the definition of «;:

(Fy, 2)[vp <§ y A Maxsz(y) Ay <z z A (assign-case) (z)A

(assign-case = case)(z, npy)].

Having liberated the definition of the well-formed syntactic structures from the
needs of the grammar mechanism there is no reason to limit ourselves to the
structural relationships that the mechanism employs. Rather, we are free to
state the theory directly in terms of any linguistically significant relationship
(Government, for example) that is definable within wSnT3—the grammar, in
effect, becomes a direct expression of the linguistic theories it is intended to
incorporate.

It is worth noting that, following typical desiderata for contemporary theories
of syntax, one expects the theory to be expressed as the consequences of a
moderate number of relatively simple principles, interpreted conjunctively.
From the perspective of the translation into an automaton, i.e., a TAG, this
corresponds to generating the set of elementary trees by the interaction of a
set of partially defined structures—in effect, to a factorization of the grammar
into a relatively small set of fragmentary components. Systems of this sort are
an active area of research in the TAG community, where they are seen as a
way of taming the complexity of defining and maintaining the large sets of
trees needed for wide-coverage TAGs [27-30]. From our current perspective,
the practical motivations of the grammar writers are not so very different than
the (meta-)theoretic motivations of the syntacticians.

Putting it all together, then, one gets the prospect of a large-scale grammar
in which all aspects of the set of elementary trees are the consequences of an
interacting set of relatively simple and highly modular principles, one that can
be developed and maintained directly in terms of these abstract principles with
the actual expansion into elementary trees being carried out by the automaton
construction algorithm.

9 Practical Issues

As we suggested earlier, the weakness in this program is the extraordinary con-
ciseness of the logical formulae relative to the automata/TAGs. Viewed from
another perspective, the practical application of the automaton construction

5 This is correct only if the foot nodes have null-adjoining constraints, as is usual.

30

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

algorithm is limited by its non-elementary complexity. As it turns out, how-
ever, experience in the one-dimensional case [7,31] has shown that, in many
useful cases, the construction is reasonably well-behaved. The problem, then,
is to find ways of avoiding the potential inefficiency—to find fragments of the
full MSO languages that do not suffer from the hyper-exponential blow-up.

Morawietz and Cornell [12,13] have explored these issues in the context of ap-
plying the two-dimensional construction to encodings of GB-style principles.
There are certain obvious things one can do in order to help limit the complex-
ity: One should limit the total number of free variables employed. (The size of
the label set is exponential in the number of free variables). One should limit
the quantifier depth. (The asymptotic size of the state set is a function of the
number of quantifier alternations.) Most importantly, as a practical matter,
one needs to limit the overall size of the formulae one works with. This last fact
has led them to embed the automata construction as the constraint solver in
a constraint logic-programming context—individual constraints are relatively
tractable and the CLP framework can be used to combine their effects.

There are a number of characteristics of the TAG application that suggest
that, despite its higher dimension, it may yet be at least as tractable as the
GB application. Chief among these is the fact that, because, in the TAG
analysis, elementary trees are required to include the entire subcategorization
frame, many relationships that are handled through the mediation of indices
in GB are local to the elementary structures. It is the indexation mechanism
that seems to push GB-style accounts over the line between the context-free
and the context-sensitive [9] and this mechanism, in its bounded form, turned
out to be a particularly intractable component in Morawietz and Cornell’s
work. In effect, the indexation mechanism needs to allow all ways (or in the
bounded form, all ways up to some fixed bound on the number of classes) of
partitioning the nodes of the structure into equivalence classes. It is hardly
surprising that this should be difficult. The elimination of arbitrary indexation
in the TAG account, in addition to being theoretically attractive, may help to
eliminate some of the limiting aspects of the GB theories.

The factorizations such as those mentioned in the previous section also should
help to control the complexity. The finer the factorization of the theory, the
smaller the formulae required to define each component. As the constructions
for conjunction and disjunction of automata are quite efficient, it should be
possible to compile the components separately, much as Morawietz and Cor-
nell’s CLP system solves them as separate constraints, and then combine the
results without suffering excessively large automata at intermediate stages.

Finally, many of the structural principles of existing factorizations of TAGs are

effectively constraints on the structure of the elementary trees. Given that, it
may be possible to implement these as filters on the sets of structures produced

31

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

by the other principles of the grammar in a way that is even more efficient
than the simple cross-product construction for conjunction.

10 Conclusion

We have presented a generalization of well known results that characterize
language-theoretic complexity classes in terms of definability in the weak
monadic second-order theories of strings and trees to tree-like structures of
arbitrary dimension. At the third level this gives us a characterization of the
Tree-Adjoining Languages in terms of definability in the weak monadic second-
order theory of three dimensional tree domains. We have looked briefly at the
potential for using this result to provide a sort of logic-programming for TAGs
which would subsume many of the current schemes to simplify large scale TAG
development and maintenance. While this program suffers from the same po-
tential intractability problems as all applications of the MSO constructions,
there is reason to believe that it may well be amenable to careful engineer-
ing. One way or the other, these issues will be resolved as the program is
completed.

References

[1] J. R. Biichi, Weak second-order arithmetic and finite automata, Zeitschrift fur
mathematische Logik und Grundlagen der Mathematik 6 (1960) 66-92.

[2] C. C. Elgot, Decision problems of finite automata design and related
arithmetics, Transactions of the American Mathematical Society 98 (1961) 21—
51.

[3] J. Doner, Tree acceptors and some of their applications, Journal of Computer
and System Sciences 4 (1970) 406-451.

[4] J. W. Thatcher, J. B. Wright, Generalized finite automata theory with an
application to a decision problem of second-order logic, Mathematical Systems
Theory 2 (1) (1968) 57-81.

[5] M. O. Rabin, Decidability of second-order theories and automata on infinite
trees, Transactions of the American Mathematical Society 141 (1969) 1-35.

[6] A. Ayari, D. Basin, S. Friedrich, Structural and behavioral modeling with
monadic logics, in: R. Drechsler, B. Becker (Eds.), The Twenty-Ninth IEEE
International Symposium on Multiple-Valued Logic, IEEE Computer Society,
Los Alamitos, Freiburg, Germany, 1999, pp. 142-151.

32

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

[7] D. Basin, N. Klarlund, Hardware verification using monadic second-order logic,
in: Computer Aided Verification: 7th International Conference, CAV’95, no. 939
in Lecture Notes in Computer Science, Springer, 1995.

[8] P. Kelb, T. Margaria, M. Mendler, C. Gsottberger, MOSEL: A flexible toolset
for monadic second-order logic, in: E. Brinksma (Ed.), Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 97, LNCS 1217, Enschede,
The Netherlands, 1997.

[9] J. Rogers, A Descriptive Approach to Language-Theoretic Complexity, Studies
in Logic, Language, and Information, CSLI/FoLLI, 1998.

[10] J. Rogers, “Grammarless” phrase structure grammar, Linguistics and
Philosophy 20 (1997) 721-746.

[11] J. Rogers, A model-theoretic framework for theories of syntax, in: Proceedings
of the 34th Annual Meeting of the Association for Computational Linguistics,
Santa Cruz, CA, 1996, pp. 10-16.

[12] F. Morawietz, T. Cornell, Representing constraints with automata, in:
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics, Madrid, Spain, 1997, pp. 468-475.

[13] F. Morawietz, T. Cornell, The MSO logic-automaton connection in linguistics,
in: Logical Aspects of Computational Lingistics, 1998.

[14] D. J. Weir, A geometric hierarchy beyond context-free languages, Theoretical
Computer Science 104 (1992) 235-261.

[15] S. Gorn, Processors for infinite codes of Shannon-Fano type, in: Symp. Math.
Theory of Automata, 1962.

[16] N. Chomsky, M. P. Schiizenberger, The algebraic theory of context-free
languages, in: P. Braffort, D. Hirschberg (Eds.), Computer Programming
and Formal Systems, 2nd Edition, Studies in Logic and the Foundations of
Mathematics, North-Holland, Amsterdam, 1963, pp. 118-161.

[17] J. W. Thatcher, Characterizing derivation trees of context-free grammars
through a generalization of finite automata theory, Journal of Computer and
System Sciences 1 (1967) 317-322.

[18] F. Gécseg, M. Steinby, Tree languages, in: G. Rozenberg, A. Salomaa (Eds.),
Handbook of Formal Languages: Beyond Words, Vol. 3, Springer, 1997, pp.
1-68.

[19] A. R. Meyer, Weak monadic second order theory of successor is not elementary-
recursive., in: Proceedings, Logic Colloquium, no. 3 in Lecture Notes in
Mathematics, Springer, 1975, pp. 132-154.

[20] A. K. Joshi, L. S. Levy, M. Takahashi, Tree adjunct grammars, Journal of
Computer and System Sciences 10 (1975) 136-163.

33

Theoretical Computer Science, 293:2, 2003, pp. 265--305.

[21] A. K. Joshi, How much context-sensitivity is required to provide
reasonable structural descriptions: Tree adjoining grammars, in: D. Dowty,
L. Karttunen, A. Zwicky (Eds.), Natural Language Processing: Psycholinguistic,
Computational and Theoretical Perspectives, Cambridge University Press,
1985.

[22] A. K. Joshi, Y. Schabes, Tree-adjoining grammars and lexicalized grammars, in:
M. Nivat, A. Podelski (Eds.), Tree Automata and Languages, Elsevier Science
Publishers B.V., 1992, pp. 409-431.

[23] W. C. Rounds, Mappings and grammars on trees, Mathematical Systems
Theory 4 (1970) 257-287.

[24] K. Vijay-Shanker, A. K. Joshi, Unification based tree adjoining grammars, in:
J. Wedekind (Ed.), Unification-based Grammars, MIT Press, Cambridge, MA,
1991.

[25] D. J. Weir, Characterizing mildly context-sensitive grammar formalisms, Ph.D.
thesis, University of Pennsylvania (1988).

[26] XTAG Research Group, A lexicalized tree adjoining grammar for English, Tech.
Rep. IRCS-98-18, Institute for Research in Cognitive Science (1998).

[27] T. Becker, HyTAG: A new type of tree adjoining grammars for hybrid syntactic
representation of free word order langauges, Ph.D. thesis, Universitat des
Saarlandes, Saarbriicken (1993).

[28] K. Vijay-Shanker, Y. Schabes, Structure sharing in lexicalized tree-adjoining
grammars, in: Proceedings COLING’92, 1992.

[29] M.-H. Candito, A principle-based hierarchical representation of LTAGs, in: 16th
International Conference on Computational Linguistics, COLING’96, 1996.

[30] R. Evans, G. Gazdar, D. Weir, Encoding lexicalized tree adjoining grammars
with a nonmonotonic inheritance hierarchy, in: 33rd Annual Meeting of the
Association for Computational Linguistics, Cambridge, MA, 1995, pp. 77-84.

[31] J. G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, R. Paige, T. Rauhe,
A. Sandhol, MONA: Monadic second-order logic in practice, in: E. Brinksma
(Ed.), Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’95 Selected Papers, no. 1019 in Lecture Notes in Computer Science,
Springer, 1995, pp. 89-110.

34

