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1 Introduction

Most of the articles in this collection reference, direablyindirectly, the
conjecture from the abstract of Hauser et al. (2002):

We hypothesize that FLN only includes recursion and is thg on
uniquely human component of the faculty of language. (Haasal.
2002:1569)

While, this conjecture has been productive in sparkingaiese it was inci-
dental to the primary focus of the original article. Ratlwroting from the
conclusion, Hauser et al. presented three central points:

First,.. . [to] move beyond unproductive debate to [a] maiab-
orative, empirically focused and comparative researcgnara aimed
at uncovering both shared (homologous or analogous) aqgeigom-
ponents of the faculty of language. Second, although we aeyeed
that most if not all of FLB is shared with other species, whasrELN



may be unique to humans, this represents a tentative, kestgtothe-
sis in need of further empirical investigation. Finally, believe that a
comparative approach is most likely to lead to new insightsug both
shared and derived features, thereby generating new sgedhcon-
cerning the evolutionary forces that led to the design offéicelty of

language. (Hauser et al. 2002:1578)

Our goal here is to contribute to that research program byoexg crite-
ria for experimental design of comparative studies acrd$sreint popula-
tions, including different species, age groups, and stbjeith neurological
deficits, targeting capabilities relevant to the languageilty.

The comparative method provides a way of analyzing evahatip phe-
nomena in the absence of genetic or fossil evidence, usirgirieal data
concerning contrasts and parallels between traits indigpecies to draw
inferences about their extinct ancestors. In particularave looking to iden-
tify shared and unique components of the faculty of languagédentify
which of the shared traits are actually homologous rathen thdependently
evolved under similar constraints, to distinguish whetherent discontinu-
ities in traits between species are the result of graduardence or reflect
discontinuities in human evolution and to distinguish vilgethuman traits
evolved by gradual extension of common preexisting compaitiun sys-
tems or were exapted away from previous non-language addptictions.
Empirical tests of such issues require studies of diffeaéoapabilities across
species, in both communication and non-communication dwsmnancluding
both spontaneous and trained behaviors.

To set the stage for what follows, consider a study, citedansér et al.
(2002), reported in Fitch and Hauser (2004). This study eyga familiar-
ization/discrimination experiments to test the ability aaftton-top tamarin
monkeys to spontaneously generalize patterns of CV sglagpoken by a
female (A) and a male B) voice. The experiments were designed to contrast
the ability of the subjects to recognize sequences of the fekB)", in which
syllables of the two classes alternate, with the abilityeloognize sequences
of the form A™B™, in which there are equal numbers of syllables from each
class, all those from one preceding all those from the offtex.form(AB)"
was chosen as an example of the clasBinite Statestringsets, stringsets in
which there is am priori bound on the amount of information that must be in-
ferred in distinguishing strings that fit the pattern frorngh that do not. The
form A™ B™ was chosen as an exemplar of the clagsafitext Freestringsets,
stringsets that can be generated@yntext Free Grammar€CFGs) and for
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which, in principle, the amount of information required tstthguish strings
that fit the pattern is proportional to the length of the gtriduman languages
are generally believed to be at least as complicated as Kdfree stringsets.

The ease with which the tamarins mastered the Finite Staterpain
contrast to their inability to master the Context Free paiteuggests that the
ability to generalize non-Finite-State patterns has el humans since
the divergence between their ancestors and the ancesttamafins. This
result, again, has been fruitful in spawning further reslegboth in terms of
comparative evidence and in terms of refining the potentideudying mech-
anism (Gentner et al. 2006; Perruchet and Rey 2005; ZimnaerNarley
2007). But one of the things that is clear in reviewing theeagsh thus far
is that the problem of designing such experiments and, itiqoderr, of inter-
preting their results, is extremely challenging. We turrtrie a proposal for
how one might beneficially continue this line of researcld, iarparticular, set
up a range of patterns or stringsets that enable more sytstegrplorations
and discoveries of the underlying psychological mechagism

2 Formal design of recognition experiments

While very different cognitive processes are involvedinireg experiments
and familiarization/discrimination experiments havesggslly the same for-
mal structure. We will concentrate on the latter. In thegmeeixnents, subjects
are familiarized with the intended stringset by exposuoioe sample of the
strings in the set. They are then tested with some sampleingstinclud-
ing both those in and those not in the intended set. The tafikea$ubject,
then, is to infer the pattern of a relatively large, possilplfjnite, stringset
from a small sample. As they are exposed to only positive @k@snany
stringset that includes this sample is consistent. Clagadysubjects cannot
extract patterns that are more complicated than they asetaldistinguish.
Our expectation, as well, is that the subjects will not cstesitly fail to ex-
tract patterns of a given level of complexity if they are dalpaf recognizing
them. Thus, the stringset they arrive at is an indicator efdapacity of the
cognitive machinery they can bring to bear on the task.

If a subject consistently, over a variety of strings, finasgs within the
intended set to be “unsurprising” and those not in it to begsging” (where
these terms refer to the relative novelty of the stimuli dredéxtent to which
they trigger greater attention or more robust responses) tiiere is reason



to conclude that they have generalized correctly. From sastlts, we are
licensed to conclude that the target species has cognéaudties sufficient

to recognize stringsets of at least this level of complexita subject con-

sistently, over a variety of strings, finds some string initliended set to be
surprising or some string not in the intended set to be umsimg, then one

can conclude that they have not extracted the intendedrpaltesubjects of

a particular species do this consistently, over a variestiafgsets within a

given complexity class, then we may plausibly conclude tiaspecies does
not have the cognitive faculties required to recognizengtiets of that level
of complexity.

The primary issue for the experimental design is deterrgimihich set
the subject has generalized to. There will always be singatrthat are con-
sistent with the familiarization set (the set of all strirmy®r the relevant al-
phabet, for example) and in general these will include boimessets and
subsets of the intended set. The strings in theddaB™, for example, have
a variety of different features which could be generalizgdhe subject. For
example, all of theds precede all of théss, the strings are all of even length
and the number ofis is equal to the number @fs. In any finite subset, there
will be additional features, upper and lower bounds on thaler of As, for
example.

[Insert Figure 1 here]

Figure 1 illustrates the situation when the subject has bgpased to just
the stringAAABBB. The set markedd™ B" includes all strings in which
the As precede théss, an extremely simple stringset (in fact, as described
below, a strictly 2-local stringset). The set mark&d3’ 2|(i+) is the subset
of those that are of even lengtha Finite State stringset. The set marked
A'B' i < 3is the finite subset oA B” in whichn is no greater than three.
The set markeglw| , = |w| is the set of all strings in whicils andBs are
equinumerou$,a Context Free stringset.

In order to distinguish subjects that have generalizedlt8", and there-
fore must be able to recognize at least some Context Fremssts, from
those that can recognize only stringsets of strictly lowanplexity we need
to expose them to strings that are in the set-theoretic syriomfference
between the simpler sets adédt B™. One can detect that the subject has gen-
eralized to a simpler set that is a subset of the intended thetrie are strings
in the intended set but not in the simpler set that are sumngri® them. One
can detect that the subject has generalized to a simpldragesia superset of



the intended set if there are strings in the simpler set buimite intended
set that are not surprising.

PairingAAABBB with AABBBB, for example, can reveal whether the
subject has generalized #'B"™ or A'B’ 2|(i + j) and provides evidence
of being able to recognize stringsets beyond the FiniteeSRairing it with
AABBDB, on the other hand, distinguishes subjects that have Jeresr&o
the strictly local stringset\™ B", but fails to distinguish Finite State from
non-Finite-StateAAB B B will be novel to both those that have generalized
to A" B™ and those that have generalized4@3’ 2|(i + 7).

Pairing AAABBB with AAAABBBB can reveal whether the subject
has erroneously generalized #5B% i < 3. Although one can never rule
out the possibility that the subject has generalized to &efisiuibset of the
intended set that happens to include both the strings iretindifirization set
and those in the discrimination set that are in the intendgdse can be rea-
sonably sure that they have not generalized to a finite setdbyding strings
in the discrimination set that are longer than any in the lianZation set and
therefore unlikely to be in any finite generalization. Thiaglure to perceive
AAAABBBB as novel suggests that the subject has not generalized to any
finite subset ofA™ B™.

Finally, AABBBA or ABABAB will appear novel even to subjects
that can recognize only strictly local stringsets, althotigey will not ap-
pear novel to a subject that has overgeneralizgahig = |w| 5. Thus these
strings fail to provide any evidence at all about the boupdetween Con-
text Free and simpler stringsets. The punch line here ightfarward: it is
critical to the validity of these experiments that we havéeaicidea not only
of the intended stringset but also of the stringsets thatutd; potentially, be
mistaken for.

Even with careful choice of stimuli there are still a variefypitfalls in
design and interpretation of these experiments that muavbieled. Exam-
ples of utterances of English that satisfy the patterns thFand Hauser
(2004) include (1a), of the forrpAB)™, and (1b), of the forni™ B".5

1) {(ding dong)" }
{people’ left" }
{people who were left(by people who were lefj" left}
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{people who were left(by people who were lefj>" left}



The fact that (1b) is well-formed is usually not clear at festounter for
n greater than two or three. The paraphrase in (1c) is muclereasparse,
but it is, in fact, Finite State. This points out one of thdidiflties of probing
the boundaries of recognition capabilities in this way. Huns seem to be
able to process, with no conscious effort, many types ofautiges which, as
stringsets, are not Finite State. But there are many wethéak utterances of
the same sort that are utterly opaque without careful consanalysis. The
fact that, in humans, the same stimulus may be processedpaidéntially
distinct faculties with differing degrees of success desti@tes the difficulty
of isolating a particular faculty experimentally. This iseoof the reasons for
testing both spontaneous and learned behavior.

A more fundamental issue is raised by the fact that (1d) ssoris a class
of utterances that, while Finite State, is unlikely to beumately identified by
most English speakers without consciously searching ®k#y to the pat-
tern (i.e., the number of prepositional phrases is requidake even). Thus,
while (1a) and (1d) are both Finite State there seems to beyadvamatic
difference in the degree of difficulty of recognizing thenhelFinite State
stringsets do not, in fact, present a uniform level of ditfigwf recogni-
tion. There is a rich hierarchy of classes of stringsetsiwithe Finite State
which corresponds to a range of gradations in cognitive luitipas. Viewed
as an instrument for probing the boundaries of these capeijlthe pair of
stringsets AB)™ and A" B™ lack resolution. Thus it is not only important
to understand which sets the subject may erroneously ihfsralso impor-
tant to understand what ranges of complexity classes maglbeant to the
faculties that are being explored.

Finally, an issue of interpretation arises when the Fitadhldauser (2004)
result is taken as suggesting that one of the capabilitinduishing hu-
mans from tamarins is a faculty for handling recursion.iraad Hauser do
not claim that their results suggest that tamarins lack a captari handling
recursion,per se only that they cannot handle phrase structure, i.e., Con-
text Free, patterns. In fact recursion is not actually neasfor recogniz-
ing the patterrd™ B™. Algorithmically, one can recognize this using a single
counter or by inferring a single binary relation over theuhpContext Free
grammars are not the only algorithmic mechanisms capabfgenérating
or recognizing Context Free stringsets. Results estabgjsthe definitional
equivalence of distinct mechanisms are ubiquitous in Fbtrmaguage The-
ory (FLT), suggesting that there is no bound on the variaifesdgorithmic



mechanisms that are equivalent in the sense of defining the skasses of
stringsets. Consequently, one cannot make inferences abguitive mech-
anisms based on the details of any particular generativihamésm. Rather
one is licensed only to make inferences based on the comnavaaibristics
of the entire class of equivalent mechanisms. The questidmiw are those
common characteristics to be determined?

3 Dual characterizations of complexity classes

Most of FLT has developed from a foundation of abstract atlyavic pro-
cesses:. grammars, which generate strings, and automaitzh) vétognize
them (Hopcroft and Ullman 1979). The characteristics o$¢hgrocesses al-
low one to reason about the structure of the stringsets tifiya] establishing
pumping lemma¥,for example, or Nerode-style characterizatiérsn un-
derstanding of this structure is critical to the design gferiments of the sort
we are interested in: How are the classes of stringsetecetateach other?
Which stringsets distinguish the classes?

In parallel with these algorithmic characterizations, @escriptivechar-
acterizations, characterizations of classes of strisgsased directly on the
properties of the strings they contain (Medvedev 196dc¢hs 1960; Elgot
1961; Thatcher and Wright 1968; McNaughton and Papert 19Admas
1982; Straubing 1994, Libkin 2004). When one specifies agsgt with
properties such as “there are equal numbers of syllables éach class of
syllables” one is specifying the stringset descriptivBlgscriptive characteri-
zations of classes of stringsets focus on the nature of thenation required
to distinguish strings that meet or do not meet such pattethe kinds of re-
lationships between the components of the strings that beudetected if the
patterns are to be recogniz&€d@he main strength of these characterizations,
from our point of view, is that they do not presuppose anyipaldr algorith-
mic mechanism. Any mechanism that can recognize or genstaitgsets
that fall properly within a descriptive class must necagsae sensitive to
the sort of information about strings that determines tlessl Hence they
provide a foundation for reasoning about the common chariatits of en-
tire classes of formally equivalent mechanisms, be theyrattsalgorithmic
mechanisms or concrete cognitive mechanisms realizedjam@ams.

A second strength is their generality. Any description oihgis that can
be expressed within the means of a descriptive class defstaagset within



that class. By varying these means systematically we cagr @vextremely
broad range of seemingly disparate ways of specifying patteith a rela-
tively small set of descriptive classes.

The fulcrum of the methodology we employ here is the deep tfzet
these two approaches to distinguishing classes of stiimgserespond. De-
scriptive classes can be characterized in terms of gramenarautomata and
vice versaThis allows us to use the descriptive characterizatiorth@ada-
sis for reasoning about cognitive mechanisms (avoidindgeltacy of basing
such reasoning on the corresponding algorithmic mecham)isrhile using
the algorithmic characterizations to guide the experilefgsign.

4 The sub-regular hierarchy

The range of complexity classes that falls between strisgsech as (1a)
and (1d), thesub-regular hierarchyhas been largely overlooked by linguists
in part because the Chomsky hierarchy starts with the FBiitde and in
part because, as human languages are widely assumed to dss@aCbn-
text Free, there has been little motivation to explore sinité-State classes
in this context. But our interest is in recognition capdig$ across many
populations, including different species, age groups andaiogical popu-
lations, targeting potential precursors to human facsilti@®nsequently, we
are fundamentally interested in classes of stringsetstieagimpler than hu-
man languages as these may well form some of the criticaligwolry and
ontogenetic building blocks. More importantly, the classethe sub-regular
hierarchy correspond to a clear hierarchy of cognitive ma@ms and, since
the classes in the hierarchy are defined purely in terms @fstyb relation-
ships between positions in strings, that hierarchy of dbgnimechanisms
will be relevant to any faculty that provides a syntax-liketion, i.e., that
processes stimuli solely as sequences of events, indeperfdaeaning.

The remainder of this section presents a brief overview efthmal as-
pects of the sub-regular hierarchy. Due to space limitativa skip most of
the formal detail, presenting just the relevant charasties of the classes
of the hierarchy. We close the section with a list of critddathe design
and interpretation of acoustic pattern recognition experits based on these
classes. A more through exposition can be found in RogerBaltham (2007).



4.1 Strictly Local Stringsets

The simplest definitions we will explore are those that dyettrings solely
in terms of the sequences of symbols that are permitted tar @ctjacently in

them, that is, in terms of the-grams making up the string. Since augrams

are not associated with probabilities we will refer to theithvthe standard
FLT terminology:k-factors.

A k-factor is just a lengthk sequence of symbols. &trictly k-Local
Definitionis a set ofk-factors drawn from some finite alphabet of symbols
augmented with beginning of stringef and end of string %) markers. A
string w satisfiesa strictly k-local definition if and only if {ff) the set of
k-factors of the augmented stringwix is a subset of those included in the
definition. A stringset is in the class gliff it can be defined with a strictly
k-local definition, it isStrictly Local(SL) (McNaughton and Papert 1971) iff
it is SL;, for somek.

The set of strings of the forriAB)" is an example of an SLstringset,
being definable by the (minimal) set of 2-factors:

) Diapy = {xA, AB, BA, B},

which asserts that the string must begin withArend with aB, that every
A is followed by aB and that everyB other than the last is followed by
an A. The set of strings licensed by this definition, denoté® 4 z)»), is
{(AB)"| i > 0}.

Membership in a Strictly Local stringset depends only orkitiactors in
isolation: a string satisfies an gldefinition iff each of thek-factors in the
string is independently licensed by that definition. Fronogrative perspec-
tive, all that is required to recognize a strickylocal stringset is attention to
each block oft symbols which occurs in the string. If the string is presdnte
sequentially in time, this amounts to remembering just #s&4d consecutive
events that have been encountered.

The key to reasoning about the structure of SL stringseteirel is
a theorem which characterizes them in terms of a propertyvires suffix
substitution closurea stringset is SL iff there is soniefor which it is closed
under the substitution of suffixes that begin with the sg@ine 1)-factor.

This allows us to identify non-SL stringsets and to congtramimal
pairs of stringsets which can be diagnostic of the abilitygémeralize SL
patterns. One simple non-SL stringset is the set of striig4ésoandBs in



which there is at least onB, a stringset we call Soms-:
3) SomeB &' {w € {4, B} | |w|; > 1}.

To see that this is not Slfor any k, note that, for any:, strings of the form
A...A-A...A-BA... Aandthose oftheforrd ... AB-A...A-A... A

k—1 k—1
are all in SomeB, but the result of substituting the suffix of a string of the
second form, starting at the marked sequenck of1 As, for the suffix of
a string of the firstformisd...A- A... A-A... A which is not in Some-

k—1

B. So, SomeB does not exhibit suffix substitution closure and can not be
specified with an SL-definition.

4.2 Locally Testable Stringsets

In order to distinguish stringsets like Sonieit is necessary to differentiate
between strings on the basis of the whole set-@dctors that they contain,
not just on the basis of the individukifactors in isolation. Descriptions, at
this level, arek-expressionsformulae in a propositional language in which
the atomic formulae ark-factors which are taken to be true of a stringff
they occur in the augmented stringox. More complicated:-expressions
are built up fromk-factors using the usual logical connectives, e.g., forcon
junction (©), disjunction {/) and negation-). Stringsets arkocally Testable
(LT) (McNaughton and Papert 1971) iff they are definable ldyexpression,
for somek. As an example, Somg-is defined by the following 2-expression,
which is true of strings that either start withor includeAB:

def
4) PSomeB = “BV AB

The relation between strings and thexpressions which holds iff the string
satisfies thek-expression is denoteg; the set of strings licensed bya
expressionp, then, isL(y) def {w | w |= ¢}. For thek-expressionpsomes,
L(psome) = SomeB. As this witnesseg;-expressions have more descrip-
tive power than S}, definitions?

Because membership in an LBtringset depends on the whole set of
k-factors that occur in a string-factors can be required to occur as well
as prohibited from occurring and they can be required to ioctarbitrary
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combinations—to occur together, to occur only if some otfwenbination of
k-factors does not occur, etc.

On the other hand, membership in an,Ltringset dependsnly on the
set of k-factors which occur in the string. Any mechanism which cé&st d
tinguish strings on this basis is capable of recognizinghgoLT;, stringset.
Conversely, any mechanism that can distinguish memberstirgset that
is LT (but not SL) must be able to distinguish strings on this basugyni-
tively, this corresponds to being sensitive to the set of-déictors that occur
anywhere in the input. If the strings are presented secalbntit amounts
to being able to remember whidhfactors have and which have not been
encountered in the stimulus.

An example of a stringset that is not LT is the set of stringsrévi, B}
in which exactlyone B occurs:

(5) oneB &' {w e {4, B} | jw|, = 1}

To see that this is not LT note that, for aky A*BA* is in One8 while
Ak B AF B A¥ is not. Since these have exactly the same sétfaktors, how-
ever, there is n&-expression that can distinguish them.

4.3 FO(+1) Definable Stringsets

The next step in extending the complexity of the stringsetsan distinguish
is to add the power to discriminate between strings on this lbthe specific
positions in which blocks of symbols occur rather than syrgn the basis
of blocks of symbols occurring somewhere in the string. Dipsons at this
level are first-order logical sentences (formulae with mefvariables) over a
restricted string-oriented signature. Atomic formulaseaisrelationships be-
tween variablesd, y, . . .) ranging over positions in the string:< y (meaning
thaty is the next position following:), x ~ y (z andy are the same posi-
tion) andA(x), B(z), ... (A occurs in position:, etc.). Larger formulae are
built from these using the logical connectives and exisé() and universal
(V) quantification. A stringu satisfies an existential (sub)formyte) [p(z)]
(i.e.,w = (3z)[p(x)]) iff some assignment of a position fermakes it true.
It satisfies a universal (sub)formula iff all such assignteemake it true. The
class of stringsets definable in this way is denotedH(

As an example, Oné? is FO(H1) definable:

(6) Oned = {w € {A, B}" | w = (3x)[B(x) A (Vy)[B(y) — v = yl]},
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which asserts that there is some positioim which a B occurs and that all
positionsy in which B occurs are that same position. As OBewitnesses,
FO(+1) definitions are more expressive thaexpressions?

It turns out that a stringset is F®() definable iff it isLocally Thresh-
old TestablegLTT) (Thomas 1982). Such stringsets distinguish stringly o
on the multiplicity of thek-factors which occur in them and only relative
to a threshold above which multiplicities of thé-factors cannot be distin-
guished.This characterization is the key to identifyimingfsets that are not
FO(+1) definable.

An example of a non-LTT, hence non-FOX)-definable, stringset is the
set of strings ovef A, B, C'} in which someB occurs before ang":

(7)
B-beforec' &' {we {A,B,C}" | atleastone B precedes any € LTT.

To see this, note that, for ay A* BA*C A* and A*C A¥ BA* have exactly
the same number of occurrences of evietfiactor and are therefore indistin-
guishable in the LTT sense for any threshald

4.4 FO(<) Definable Stringsets

We can, again, increase the complexity of the stringsetsamedéstinguish
by, beyond just discriminating individual occurrenceskefactors, differen-
tiating between strings based on the order in which the$actors occur.
FO(<) descriptions extend F@(1) descriptions to include precedencee-
lation <* which corresponds te: on the domain of the structure. An example
of a FO) definable stringset that is not FO() definable isB-before"

(8) B-beforeC = {w | w k= (32)[ C(x) — Gy)[B(y) Ay < ] ] ).

This formula asserts that if there is a positiom which C occurs, then there
is a positiony in which B occurs which precedesin the string.

Strikingly, it turns out that extending the signature witlk precedence re-
lation in this way is exactly equivalent to adding a concat&m operatord)
to the language of-expressions. A stringset ically Testable with Order
(LTO) (McNaughton and Papert 1971) iff it is definable witk-&xpression
augmented in this way. Note that we can defivbefore with

9) (—(xCV AC'V BC) e (xB)) V =(xCV AC V BC),
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which is satisfied either by strings which consist of a suibgtm which no
C occurs followed by one which starts wifh or by those in which, simply,
no C occurs at all.

If the strings are presented sequentially, this corresptmbeing able to
apply a fixed set of sequences of LTT-style threshold cogmtatognition
strategies. Effectively, it corresponds to being able tontaccurrences of
events up to some threshold, coupled with the capacity &t the counters
some fixed number of times.

The most useful abstract characterization of the struafithe FOK)
definable stringsets follows from an automata-theoretaratterization due
to McNaughton and Papert (1971)In essence, a stringset is F&)(defin-
able iff there is some constant> 0 for which, whenever a string in the set
includes a block of symbols which is iterated at leagimes, then it also
includes all strings which are identical except that thatcklis iterated an
arbitrary number of times greater than

An example of a non-FQ&() definable stringset is the set of strings over
{A, B} in which the number oBs is even:

(10) Evend &' {w e {4, B} | |w|, = 2i, 0 <i} £ LTT

This set includes strings in whicB is repeated at least times, whatever
value the constant might have. But adding one morg to that block ofBs
produces a string with an odd numberigs.

4.5 MSO Definable Stringsets

The next step in increasing the power of our description® iswtroduce
abstraction—to assign the occurrences of symbols in tliregstto abstract
categories and to discriminate between the strings on e béthe sequence
of categories rather than the sequence of symbols thenssé&hagegories of
this sort can be captured in logical languages by allowirengjtication over
not just individual positions in the strings but over setgositions, i.e, by
addingMonadic Second-Orderariables along with their quantifiers. An ex-
ample of an MSO definition of a stringset is:

(3Xo)[ (Va)[-(Fy)ly < 2] — Xo(z)] A
(11) (Va, y)[z <y — (Xo(z) < =(Xo(y))] A
(V) [=(Fy) [z 9 y] = =(Xo())] ]
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This defines the set of all strings that are of even lengtlsseds that there is
a subset of positions in the string ¢) which includes the first position in the
string, alternates between inclusion and exclusion ofcajapositions and
does not include the last positidh This formula can be modified to ignore
everything except positions labeld?] which gives a definition of Everf.
So MSO is a proper superclass of KQ(

The assignments of positions in the strings to MSO variaislesjuiva-
lent, in a strong sense, to the association of those positidth states in the
runs of Finite State automata. And, in fact, the MSO-defiaatilingsets are
exactly the Finite State stringsets (Medvedev 19648 1960; Elgot 1961).

The abstract character of the MSO definable stringsets ingecpience
of their characterization by Finite State automata. Twongw andv are
Nerode Equivalentvith respect to a stringsét over an alphabet (denoted
w =g, v) iff for all stringsw over:, wu € L < vu € L. A stringsetL is
Finite State iff=;, partitions the set of all strings ovér into finitely many
equivalence classes. These equivalence classes cordetsptite categories
(to the distinguished subsets) of the MSO definitions.

Since the MSO definable stringsets extend the FO definablgsgts, the
ability to discriminate between strings based on categaithe events that
comprise them in this way implies the ability to discrimiadietween them
based on the multiplicity of theik-factors, counting up to a fixed thresh-
old. As the definability of Ever3 suggests, it extends this to the ability to
distinguish strings based on the residues (remaindergjosetmultiplicities
relative to some modulus, in essence to count modulo thossttblds, reset-
ting the counters unboundedly often. It is, in fact, equewlto using a finite
set of counters that count modulo some threshold.

It does not, on the other hand, provide the ability to coubiteaarily high;
the stringse{ A" B™ | n > 0}, for example, is not MSO definable because the
Nerode equivalence for the set is:

(12)
w=anpn v S w,v g€ {A'B |i,j>0}or |w|, —|w|g=|v]y—|v|g-

for which there are infinitely many equivalence classes.

Cognitively, the Finite State stringsets characterize x@remely broad
range of mechanisms: whenever there is a fixed finite bount@armount
of information a mechanism can retain while processingiagthe mecha-
nism will be limited to recognizing at most Finite State—&glently, MSO
definable—stringsets. Note, though, that the fact that garoasm can recog-
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nize non-Finite-State stringsets does not imply that thesjglal mechanisms
they employ must have access to a store of unbounded sizendtteanisms
may implement an algorithm which, in principle, requirebounded storage
which fails on sufficiently long or sufficiently complicatégputs. Or would
if it ever encountered such.

4.6 Beyond Finite State

The ability to recognize stringsets that are not Finite &Siaplies discrimi-
nating between strings on the basis of information aboustiieg the size of
which depends on the length of the string—being able to ctmwelues that
are proportional to the length of the string, for examplee Tveakest class
of the Chomsky hierarchy which properly extends the clasBinite State
stringsets is the class abntext freestringsets, those that can be generated
by context free grammars. But there are many ways of utgizmounts of
information that depend on the length of the string that dopmovide the
ability to recognize context free stringsets in generak $imgle counter that
suffices to recognizel” B™ can also recognize sets of well-nested brackets
(the single bracket Dyck stringset®; ), but it does not suffice to recognize
D, the two bracket Dyck stringsets, for example. There arfadaty multiple
hierarchies which partition the context free stringsess as the sub-regular
hierarchy partitions the Finite State stringsets. Experita that are intended
to differentiate abilities beyond the Finite State will dee be based on for-
mal analyses of this territory similar to the analysis ofshe-regular hierar-
chy we have provided here.

5 Recognition experiments

[ Table 1 goes here ]

Tables 1 and 2 summarize the conclusions that can be drawrt #im
cognitive capabilities of the subjects given the resultsegbgnition experi-
ments based on the sub-regular hierarchy.

To test the recognition capabilities of a species relativhese classes
one could use experiments based on patterns such as theseigitheEx-
amplecolumn of Table 1. Species with the ability to recognizegrais of that
sort, having been familiarized to strings of the form givarttieln column,
should generally find novel strings of that form unsurpigswhile finding
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strings of the form given in th®ut column surprising. If, on the other hand,
subjects consistently fail to find strings of the form givarthe Out column
surprising after being familiarized to strings of the formen in theln col-
umn, this would be evidence that the target species is urialdestinguish
patterns of that level of complexity.

[ Insert Table 2 here ]

Table 2 summarizes the conclusions that can be drawn fromregalts.
Recognizeoutcomes represent lower bounds on the species’ capabigy. T
indicate that the subject has at least the cognitive cafiebilgiven in the
Cognitive significanceolumn. Fail outcomes represent upper bounds, evi-
dence that the subject is limited in the way indicated inGlognitive signifi-
cancecolumn.

6 Conclusion

Acoustic pattern recognition or artificial language leagnéxperiments pro-
vide a powerful approach to understanding the ontogeneticesiolutionary
building blocks of the human language faculty, distingirighwhat is shared
with other species and what is uniquely human. To designrerpats of
this sort with highly interpretable results, one must bexckbout a bewil-
dering array of formal considerations. These include tlemitive capacities
that the experiment is designed to probe, the abstracttsteuof the classes
of stringsets that those capabilities characterize, tiuetsire of the stringsets
the intended stringset may be confused with and what suctusion signi-
fies about the capabilities of the subjects.

The subregular hierarchy is a range of complexity classsstrrespond
to a range of cognitive capabilities that are, by virtue &f descriptive char-
acteristics of the classes, necessarily relevant to anyltfathat processes
aural stimuli solely as sequences of events. As such it pesva clear frame-
work for resolving these issues. We hope that our expositidhis hierarchy
will facilitate continued experimentation of this type.

Notes

This work was undertaken while the first author was in resideat the Radcliffe Institute
for Advanced Study

2The authors would like to express their gratitude to GeoffuPu for his extensive col-
laboration on this work and to Barbara Scholz and the reggi@etheir helpful suggestions.

3The expressior|y denotes the property gfbeing an integral multiple of.

16



“The expressiotw| denotes the length of the string—the number of symbols it contains.
The expressioffw| , denotes the number ofs it contains.

5These two examples are due to Geoffrey K. Pullum.

SPumping lemmas establish certain types of closure pragseofi stringsets: if a stringset
includes strings with length exceeding an arbitrary buifigeund then it also includes strings
in which certain substrings are repeated arbitrarily mangs. Shieber (1985) and Huybregts
(1984) employed results of this sort to show that certaifedta of Swiss-German are not
representable as Context Free stringsets.

"These characterize the structure of stringsets in termiseofvty in which certain rela-
tions on strings, which depend on the stringset, partiti@nset of all strings into equivalence
classes.

8We provide concrete examples of what we mean by “nature ofrtteemation” as we
survey a range of descriptive classes in the next section.

%It is easy to translate an $ldescription into &-expression defining the same stringset,
SO LTy is a strict superclass of $L

10 Again, k-expressions can be easily translated into-FQformulae; so FO1) is a strict
superclass of LT.

A Finite State automaton recognizes an EQétringset iff its syntactic monoid is aperi-
odic.

12The reader should note the similarity between this defimiiad the Sk definition of
(AB)™ (Equation 2).
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ABABAB
lwly = wly
AABBBA

ABI2|(i + j)
AABBBB

AAABBB

AiB1i<3

Figure 1: Testing recognition oA B™.

| Class| Example | In \ Out \
SL (AB)" (AB)"*+! | (AB)'BB(AB)’
LT | SomeB A'BAI A+l
FO(+1) OneB A'BATFRHI A'BAJBAF
FO(<) | B-beforeC | A'BAIC AF A'C AT BAF
MSO | EvenB B Bl
CF A" B" A" B" An+an—1

Table 1: Distinguishing classes of the sub-regular hiénasxperimentally.
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| Class| Outcomes | Cognitive significance |
SL | Recognize Sensitive to a fixed length block of the immediate
(AB)™ prior events
Fail SomeB | Only sensitive to the immediately prior events
LT | Recognize Sensitive to which fixed length blocks of events ¢
SomeB cur in the input, effectively being able to recall s
quences of events that occur at arbitrary points
Fail One3 Insensitive to multiplicity or order of blocks
FO(+1) | Recognize Sensitive to the multiplicity of events that occur
OneB the input, at least up to some fixed threshold
Fail Insensitive to order of blocks
B-befored”
FO(<) | Recognize Sensitive to the multiplicity, up to some fixed thres
B-beforeC' | old, of events that occur in the input and to the ordler
in which a fixed number of events occur, in effe
counting to a threshold and resetting the counters up
to a fixed number of times
Fail EvenB | Insensitive to order of events beyond some fix
number
MSO | Recognize Capable of classifying the events in the input in
EvenB a finite set of abstract categories and sensitive to
sequence of those categories. Subsuemgsecogni-
tion mechanism in which the amount of information
retained is limited by a fixed finite bound.
Fail A" B™ fixed finite bound, independent of the input,
amount of information retained

Table 2: Cognitive significance of recognition results.
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