
The Use of Formal Language Theory in Studies
of Artificial Language Learning:

a proposal for distinguishing the differences
between human and nonhuman animal learners

James Rogers1

Earlham College
Richmond, IN USA

jrogers@cs.earlham.edu

Marc D. Hauser2

Depts. of Psychology, Organismic & Evolutionary Biology
and Biological Anthropology

Harvard University

1 Introduction

Most of the articles in this collection reference, directlyor indirectly, the
conjecture from the abstract of Hauser et al. (2002):

We hypothesize that FLN only includes recursion and is the only
uniquely human component of the faculty of language. (Hauser et al.
2002:1569)

While, this conjecture has been productive in sparking research, it was inci-
dental to the primary focus of the original article. Rather,quoting from the
conclusion, Hauser et al. presented three central points:

First,. . . [to] move beyond unproductive debate to [a] more collab-
orative, empirically focused and comparative research program aimed
at uncovering both shared (homologous or analogous) and unique com-
ponents of the faculty of language. Second, although we haveargued
that most if not all of FLB is shared with other species, whereas FLN
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may be unique to humans, this represents a tentative, testable hypothe-
sis in need of further empirical investigation. Finally, webelieve that a
comparative approach is most likely to lead to new insights about both
shared and derived features, thereby generating new hypotheses con-
cerning the evolutionary forces that led to the design of thefaculty of
language. (Hauser et al. 2002:1578)

Our goal here is to contribute to that research program by exploring crite-
ria for experimental design of comparative studies across different popula-
tions, including different species, age groups, and subjects with neurological
deficits, targeting capabilities relevant to the language faculty.

The comparative method provides a way of analyzing evolutionary phe-
nomena in the absence of genetic or fossil evidence, using empirical data
concerning contrasts and parallels between traits in living species to draw
inferences about their extinct ancestors. In particular, we are looking to iden-
tify shared and unique components of the faculty of language, to identify
which of the shared traits are actually homologous rather than independently
evolved under similar constraints, to distinguish whethercurrent discontinu-
ities in traits between species are the result of gradual divergence or reflect
discontinuities in human evolution and to distinguish whether human traits
evolved by gradual extension of common preexisting communication sys-
tems or were exapted away from previous non-language adaptive functions.
Empirical tests of such issues require studies of differential capabilities across
species, in both communication and non-communication domains, including
both spontaneous and trained behaviors.

To set the stage for what follows, consider a study, cited in Hauser et al.
(2002), reported in Fitch and Hauser (2004). This study employed familiar-
ization/discrimination experiments to test the ability ofcotton-top tamarin
monkeys to spontaneously generalize patterns of CV syllables spoken by a
female (A) and a male (B) voice. The experiments were designed to contrast
the ability of the subjects to recognize sequences of the form (AB)n, in which
syllables of the two classes alternate, with the ability to recognize sequences
of the formAnBn, in which there are equal numbers of syllables from each
class, all those from one preceding all those from the other.The form(AB)n

was chosen as an example of the class ofFinite Statestringsets, stringsets in
which there is ana priori bound on the amount of information that must be in-
ferred in distinguishing strings that fit the pattern from those that do not. The
formAnBn was chosen as an exemplar of the class ofContext Freestringsets,
stringsets that can be generated byContext Free Grammars(CFGs) and for
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which, in principle, the amount of information required to distinguish strings
that fit the pattern is proportional to the length of the string. Human languages
are generally believed to be at least as complicated as Context Free stringsets.

The ease with which the tamarins mastered the Finite State pattern, in
contrast to their inability to master the Context Free pattern, suggests that the
ability to generalize non-Finite-State patterns has evolved in humans since
the divergence between their ancestors and the ancestors oftamarins. This
result, again, has been fruitful in spawning further research, both in terms of
comparative evidence and in terms of refining the potential underlying mech-
anism (Gentner et al. 2006; Perruchet and Rey 2005; Zimmererand Varley
2007). But one of the things that is clear in reviewing the research thus far
is that the problem of designing such experiments and, in particular, of inter-
preting their results, is extremely challenging. We turn next to a proposal for
how one might beneficially continue this line of research, and in particular, set
up a range of patterns or stringsets that enable more systematic explorations
and discoveries of the underlying psychological mechanisms.

2 Formal design of recognition experiments

While very different cognitive processes are involved, training experiments
and familiarization/discrimination experiments have essentially the same for-
mal structure. We will concentrate on the latter. In these experiments, subjects
are familiarized with the intended stringset by exposure tosome sample of the
strings in the set. They are then tested with some sample of strings includ-
ing both those in and those not in the intended set. The task ofthe subject,
then, is to infer the pattern of a relatively large, possiblyinfinite, stringset
from a small sample. As they are exposed to only positive examples, any
stringset that includes this sample is consistent. Clearlythe subjects cannot
extract patterns that are more complicated than they are able to distinguish.
Our expectation, as well, is that the subjects will not consistently fail to ex-
tract patterns of a given level of complexity if they are capable of recognizing
them. Thus, the stringset they arrive at is an indicator of the capacity of the
cognitive machinery they can bring to bear on the task.

If a subject consistently, over a variety of strings, finds strings within the
intended set to be “unsurprising” and those not in it to be “surprising” (where
these terms refer to the relative novelty of the stimuli and the extent to which
they trigger greater attention or more robust responses) then there is reason
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to conclude that they have generalized correctly. From suchresults, we are
licensed to conclude that the target species has cognitive faculties sufficient
to recognize stringsets of at least this level of complexity. If a subject con-
sistently, over a variety of strings, finds some string in theintended set to be
surprising or some string not in the intended set to be unsurprising, then one
can conclude that they have not extracted the intended pattern. If subjects of
a particular species do this consistently, over a variety ofstringsets within a
given complexity class, then we may plausibly conclude thatthe species does
not have the cognitive faculties required to recognize stringsets of that level
of complexity.

The primary issue for the experimental design is determining which set
the subject has generalized to. There will always be simplersets that are con-
sistent with the familiarization set (the set of all stringsover the relevant al-
phabet, for example) and in general these will include both supersets and
subsets of the intended set. The strings in the setAnBn, for example, have
a variety of different features which could be generalized by the subject. For
example, all of theAs precede all of theBs, the strings are all of even length
and the number ofAs is equal to the number ofBs. In any finite subset, there
will be additional features, upper and lower bounds on the number ofAs, for
example.

[Insert Figure 1 here]
Figure 1 illustrates the situation when the subject has beenexposed to just

the stringAAABBB. The set markedAmBn includes all strings in which
the As precede theBs, an extremely simple stringset (in fact, as described
below, a strictly 2-local stringset). The set markedAiBj 2|(i+j) is the subset
of those that are of even length,3 a Finite State stringset. The set marked
AiBi i ≤ 3 is the finite subset ofAnBn in which n is no greater than three.
The set marked|w|A = |w|B is the set of all strings in whichAs andBs are
equinumerous,4 a Context Free stringset.

In order to distinguish subjects that have generalized toAnBn, and there-
fore must be able to recognize at least some Context Free stringsets, from
those that can recognize only stringsets of strictly lower complexity we need
to expose them to strings that are in the set-theoretic symmetric difference
between the simpler sets andAnBn. One can detect that the subject has gen-
eralized to a simpler set that is a subset of the intended set if there are strings
in the intended set but not in the simpler set that are surprising to them. One
can detect that the subject has generalized to a simpler set that is a superset of

4



the intended set if there are strings in the simpler set but not in the intended
set that are not surprising.

PairingAAABBB with AABBBB, for example, can reveal whether the
subject has generalized toAnBn or AiBj 2|(i + j) and provides evidence
of being able to recognize stringsets beyond the Finite State. Pairing it with
AABBB, on the other hand, distinguishes subjects that have generalized to
the strictly local stringsetAmBn, but fails to distinguish Finite State from
non-Finite-State;AABBB will be novel to both those that have generalized
to AnBn and those that have generalized toAiBj 2|(i + j).

PairingAAABBB with AAAABBBB can reveal whether the subject
has erroneously generalized toAiBi i ≤ 3. Although one can never rule
out the possibility that the subject has generalized to a finite subset of the
intended set that happens to include both the strings in the familiarization set
and those in the discrimination set that are in the intended set, one can be rea-
sonably sure that they have not generalized to a finite set by including strings
in the discrimination set that are longer than any in the familiarization set and
therefore unlikely to be in any finite generalization. Thus,failure to perceive
AAAABBBB as novel suggests that the subject has not generalized to any
finite subset ofAnBn.

Finally, AABBBA or ABABAB will appear novel even to subjects
that can recognize only strictly local stringsets, although they will not ap-
pear novel to a subject that has overgeneralized to|w|A = |w|B. Thus these
strings fail to provide any evidence at all about the boundary between Con-
text Free and simpler stringsets. The punch line here is straightforward: it is
critical to the validity of these experiments that we have a clear idea not only
of the intended stringset but also of the stringsets that it could, potentially, be
mistaken for.

Even with careful choice of stimuli there are still a varietyof pitfalls in
design and interpretation of these experiments that must beavoided. Exam-
ples of utterances of English that satisfy the patterns of Fitch and Hauser
(2004) include (1a), of the form(AB)n, and (1b), of the formAnBn.5

(1) a. {(ding dong)n}

b. {peoplen leftn}

c. {people who were left(by people who were left)n left}

d. {people who were left(by people who were left)2n left}
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The fact that (1b) is well-formed is usually not clear at firstencounter for
n greater than two or three. The paraphrase in (1c) is much easier to parse,
but it is, in fact, Finite State. This points out one of the difficulties of probing
the boundaries of recognition capabilities in this way. Humans seem to be
able to process, with no conscious effort, many types of utterances which, as
stringsets, are not Finite State. But there are many well formed utterances of
the same sort that are utterly opaque without careful conscious analysis. The
fact that, in humans, the same stimulus may be processed withpotentially
distinct faculties with differing degrees of success demonstrates the difficulty
of isolating a particular faculty experimentally. This is one of the reasons for
testing both spontaneous and learned behavior.

A more fundamental issue is raised by the fact that (1d) represents a class
of utterances that, while Finite State, is unlikely to be accurately identified by
most English speakers without consciously searching for the key to the pat-
tern (i.e., the number of prepositional phrases is requiredto be even). Thus,
while (1a) and (1d) are both Finite State there seems to be a very dramatic
difference in the degree of difficulty of recognizing them. The Finite State
stringsets do not, in fact, present a uniform level of difficulty of recogni-
tion. There is a rich hierarchy of classes of stringsets within the Finite State
which corresponds to a range of gradations in cognitive capabilities. Viewed
as an instrument for probing the boundaries of these capabilities, the pair of
stringsets(AB)n andAnBn lack resolution. Thus it is not only important
to understand which sets the subject may erroneously infer,it is also impor-
tant to understand what ranges of complexity classes may be relevant to the
faculties that are being explored.

Finally, an issue of interpretation arises when the Fitch and Hauser (2004)
result is taken as suggesting that one of the capabilities distinguishing hu-
mans from tamarins is a faculty for handling recursion. Fitch and Hauser do
not claim that their results suggest that tamarins lack a capacity for handling
recursion,per se, only that they cannot handle phrase structure, i.e., Con-
text Free, patterns. In fact recursion is not actually necessary for recogniz-
ing the patternAnBn. Algorithmically, one can recognize this using a single
counter or by inferring a single binary relation over the input. Context Free
grammars are not the only algorithmic mechanisms capable ofgenerating
or recognizing Context Free stringsets. Results establishing the definitional
equivalence of distinct mechanisms are ubiquitous in Formal Language The-
ory (FLT), suggesting that there is no bound on the varietiesof algorithmic
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mechanisms that are equivalent in the sense of defining the same classes of
stringsets. Consequently, one cannot make inferences about cognitive mech-
anisms based on the details of any particular generative mechanism. Rather
one is licensed only to make inferences based on the common characteristics
of the entire class of equivalent mechanisms. The question is, how are those
common characteristics to be determined?

3 Dual characterizations of complexity classes

Most of FLT has developed from a foundation of abstract algorithmic pro-
cesses: grammars, which generate strings, and automata, which recognize
them (Hopcroft and Ullman 1979). The characteristics of these processes al-
low one to reason about the structure of the stringsets they define, establishing
pumping lemmas,6 for example, or Nerode-style characterizations.7 An un-
derstanding of this structure is critical to the design of experiments of the sort
we are interested in: How are the classes of stringsets related to each other?
Which stringsets distinguish the classes?

In parallel with these algorithmic characterizations, aredescriptivechar-
acterizations, characterizations of classes of stringsets based directly on the
properties of the strings they contain (Medvedev 1964; Büchi 1960; Elgot
1961; Thatcher and Wright 1968; McNaughton and Papert 1971;Thomas
1982; Straubing 1994; Libkin 2004). When one specifies a stringset with
properties such as “there are equal numbers of syllables from each class of
syllables” one is specifying the stringset descriptively.Descriptive characteri-
zations of classes of stringsets focus on the nature of the information required
to distinguish strings that meet or do not meet such patterns—the kinds of re-
lationships between the components of the strings that mustbe detected if the
patterns are to be recognized.8 The main strength of these characterizations,
from our point of view, is that they do not presuppose any particular algorith-
mic mechanism. Any mechanism that can recognize or generatestringsets
that fall properly within a descriptive class must necessarily be sensitive to
the sort of information about strings that determines the class. Hence they
provide a foundation for reasoning about the common characteristics of en-
tire classes of formally equivalent mechanisms, be they abstract algorithmic
mechanisms or concrete cognitive mechanisms realized in organisms.

A second strength is their generality. Any description of strings that can
be expressed within the means of a descriptive class defines astringset within

7



that class. By varying these means systematically we can cover an extremely
broad range of seemingly disparate ways of specifying patterns with a rela-
tively small set of descriptive classes.

The fulcrum of the methodology we employ here is the deep factthat
these two approaches to distinguishing classes of stringsets correspond. De-
scriptive classes can be characterized in terms of grammarsand automata and
vice versa. This allows us to use the descriptive characterizations asthe ba-
sis for reasoning about cognitive mechanisms (avoiding thefallacy of basing
such reasoning on the corresponding algorithmic mechanisms) while using
the algorithmic characterizations to guide the experimental design.

4 The sub-regular hierarchy

The range of complexity classes that falls between stringsets such as (1a)
and (1d), thesub-regular hierarchy, has been largely overlooked by linguists
in part because the Chomsky hierarchy starts with the FiniteState and in
part because, as human languages are widely assumed to be at least Con-
text Free, there has been little motivation to explore sub-Finite-State classes
in this context. But our interest is in recognition capabilities across many
populations, including different species, age groups and neurological popu-
lations, targeting potential precursors to human faculties. Consequently, we
are fundamentally interested in classes of stringsets thatare simpler than hu-
man languages as these may well form some of the critical evolutionary and
ontogenetic building blocks. More importantly, the classes in the sub-regular
hierarchy correspond to a clear hierarchy of cognitive mechanisms and, since
the classes in the hierarchy are defined purely in terms of types of relation-
ships between positions in strings, that hierarchy of cognitive mechanisms
will be relevant to any faculty that provides a syntax-like function, i.e., that
processes stimuli solely as sequences of events, independent of meaning.

The remainder of this section presents a brief overview of the formal as-
pects of the sub-regular hierarchy. Due to space limitations we skip most of
the formal detail, presenting just the relevant characteristics of the classes
of the hierarchy. We close the section with a list of criteriafor the design
and interpretation of acoustic pattern recognition experiments based on these
classes. A more through exposition can be found in Rogers andPullum (2007).

8



4.1 Strictly Local Stringsets

The simplest definitions we will explore are those that specify strings solely
in terms of the sequences of symbols that are permitted to occur adjacently in
them, that is, in terms of then-grams making up the string. Since ourn-grams
are not associated with probabilities we will refer to them with the standard
FLT terminology:k-factors.

A k-factor is just a lengthk sequence of symbols. AStrictly k-Local
Definition is a set ofk-factors drawn from some finite alphabet of symbols
augmented with beginning of string (⋊) and end of string (⋉) markers. A
string w satisfiesa strictly k-local definition if and only if (iff ) the set of
k-factors of the augmented string⋊w⋉ is a subset of those included in the
definition. A stringset is in the class SLk iff it can be defined with a strictly
k-local definition, it isStrictly Local(SL) (McNaughton and Papert 1971) iff
it is SLk for somek.

The set of strings of the form(AB)n is an example of an SL2 stringset,
being definable by the (minimal) set of 2-factors:

(2) D(AB)n

def
= {⋊A, AB, BA, B⋉},

which asserts that the string must begin with anA, end with aB, that every
A is followed by aB and that everyB other than the last is followed by
an A. The set of strings licensed by this definition, denotedL(D(AB)n), is
{(AB)i | i > 0}.

Membership in a Strictly Local stringset depends only on thek-factors in
isolation: a string satisfies an SLk definition iff each of thek-factors in the
string is independently licensed by that definition. From a cognitive perspec-
tive, all that is required to recognize a strictlyk-local stringset is attention to
each block ofk symbols which occurs in the string. If the string is presented
sequentially in time, this amounts to remembering just the lastk consecutive
events that have been encountered.

The key to reasoning about the structure of SL stringsets in general is
a theorem which characterizes them in terms of a property known assuffix
substitution closure: a stringset is SL iff there is somek for which it is closed
under the substitution of suffixes that begin with the same(k − 1)-factor.

This allows us to identify non-SL stringsets and to construct minimal
pairs of stringsets which can be diagnostic of the ability togeneralize SL
patterns. One simple non-SL stringset is the set of strings of As andBs in
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which there is at least oneB, a stringset we call Some-B:

(3) Some-B
def
= {w ∈ {A, B}∗ | |w|B ≥ 1}.

To see that this is not SLk for anyk, note that, for anyk, strings of the form
A . . . A ·A . . . A

︸ ︷︷ ︸

k−1

·BA . . . A and those of the formA . . . AB ·A . . . A
︸ ︷︷ ︸

k−1

·A . . . A

are all in Some-B, but the result of substituting the suffix of a string of the
second form, starting at the marked sequence ofk − 1 As, for the suffix of
a string of the first form isA . . . A · A . . . A

︸ ︷︷ ︸

k−1

·A . . . A which is not in Some-

B. So, Some-B does not exhibit suffix substitution closure and can not be
specified with an SL-definition.

4.2 Locally Testable Stringsets

In order to distinguish stringsets like Some-B it is necessary to differentiate
between strings on the basis of the whole set ofk-factors that they contain,
not just on the basis of the individualk-factors in isolation. Descriptions, at
this level, arek-expressions, formulae in a propositional language in which
the atomic formulae arek-factors which are taken to be true of a stringw iff
they occur in the augmented string⋊w⋉. More complicatedk-expressions
are built up fromk-factors using the usual logical connectives, e.g., for con-
junction (∧), disjunction (∨) and negation (¬). Stringsets areLocally Testable
(LT) (McNaughton and Papert 1971) iff they are definable by ak-expression,
for somek. As an example, Some-B is defined by the following 2-expression,
which is true of strings that either start withB or includeAB:

(4) ϕSome-B
def
= ⋊B ∨ AB

The relation between strings and thek-expressions which holds iff the string
satisfies thek-expression is denoted|=; the set of strings licensed by ak-

expressionϕ, then, isL(ϕ)
def
= {w | w |= ϕ}. For thek-expressionϕSome-B ,

L(ϕSome-B) = Some-B. As this witnesses,k-expressions have more descrip-
tive power than SLk definitions.9

Because membership in an LTk stringset depends on the whole set of
k-factors that occur in a stringk-factors can be required to occur as well
as prohibited from occurring and they can be required to occur in arbitrary
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combinations—to occur together, to occur only if some othercombination of
k-factors does not occur, etc.

On the other hand, membership in an LTk stringset dependsonly on the
set ofk-factors which occur in the string. Any mechanism which can dis-
tinguish strings on this basis is capable of recognizing (some) LTk stringset.
Conversely, any mechanism that can distinguish members of astringset that
is LTk (but not SL) must be able to distinguish strings on this basis. Cogni-
tively, this corresponds to being sensitive to the set of allk-factors that occur
anywhere in the input. If the strings are presented sequentially, it amounts
to being able to remember whichk-factors have and which have not been
encountered in the stimulus.

An example of a stringset that is not LT is the set of strings over {A, B}
in whichexactlyoneB occurs:

(5) One-B
def
= {w ∈ {A, B}∗ | |w|B = 1}

To see that this is not LT note that, for anyk, AkBAk is in One-B while
AkBAkBAk is not. Since these have exactly the same set ofk-factors, how-
ever, there is nok-expression that can distinguish them.

4.3 FO(+1) Definable Stringsets

The next step in extending the complexity of the stringsets we can distinguish
is to add the power to discriminate between strings on the basis of the specific
positions in which blocks of symbols occur rather than simply on the basis
of blocks of symbols occurring somewhere in the string. Descriptions at this
level are first-order logical sentences (formulae with no free variables) over a
restricted string-oriented signature. Atomic formulae assert relationships be-
tween variables (x, y, . . .) ranging over positions in the string:x ⊳ y (meaning
thaty is the next position followingx), x ≈ y (x andy are the same posi-
tion) andA(x), B(x), . . . (A occurs in positionx, etc.). Larger formulae are
built from these using the logical connectives and existential (∃) and universal
(∀) quantification. A stringw satisfies an existential (sub)formula(∃x)[ϕ(x)]
(i.e.,w |= (∃x)[ϕ(x)]) iff some assignment of a position forx makes it true.
It satisfies a universal (sub)formula iff all such assignments make it true. The
class of stringsets definable in this way is denoted FO(+1).

As an example, One-B is FO(+1) definable:

(6) One-B = {w ∈ {A, B}∗ | w |= (∃x)[B(x) ∧ (∀y)[B(y) → x ≈ y] ]},
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which asserts that there is some positionx in which aB occurs and that all
positionsy in which B occurs are that same position. As One-B witnesses,
FO(+1) definitions are more expressive thank-expressions.10

It turns out that a stringset is FO(+1) definable iff it isLocally Thresh-
old Testable(LTT) (Thomas 1982). Such stringsets distinguish strings only
on the multiplicity of thek-factors which occur in them and only relative
to a thresholdt above which multiplicities of thek-factors cannot be distin-
guished.This characterization is the key to identifying stringsets that are not
FO(+1) definable.

An example of a non-LTT, hence non-FO(+1)-definable, stringset is the
set of strings over{A, B, C} in which someB occurs before anyC:
(7)

B-before-C
def
= {w ∈ {A, B, C}∗ | at least one B precedes any C} 6∈ LTT.

To see this, note that, for anyk, AkBAkCAk andAkCAkBAk have exactly
the same number of occurrences of everyk-factor and are therefore indistin-
guishable in the LTT sense for any thresholdt.

4.4 FO(<) Definable Stringsets

We can, again, increase the complexity of the stringsets we can distinguish
by, beyond just discriminating individual occurrences ofk-factors, differen-
tiating between strings based on the order in which thosek-factors occur.
FO(<) descriptions extend FO(+1) descriptions to include aprecedencere-
lation⊳∗ which corresponds to< on the domain of the structure. An example
of a FO(<) definable stringset that is not FO(+1) definable isB-before-C:

(8) B-before-C = {w | w |= (∃x)[ C(x) → (∃y)[B(y) ∧ y ⊳∗ x] ] }.

This formula asserts that if there is a positionx in whichC occurs, then there
is a positiony in whichB occurs which precedesx in the string.

Strikingly, it turns out that extending the signature with the precedence re-
lation in this way is exactly equivalent to adding a concatenation operator (•)
to the language ofk-expressions. A stringset isLocally Testable with Order
(LTO) (McNaughton and Papert 1971) iff it is definable with ak-expression
augmented in this way. Note that we can defineB-before-C with

(9) (¬(⋊C ∨ AC ∨ BC) • (⋊B)) ∨ ¬(⋊C ∨ AC ∨ BC),
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which is satisfied either by strings which consist of a substring in which no
C occurs followed by one which starts withB or by those in which, simply,
noC occurs at all.

If the strings are presented sequentially, this corresponds to being able to
apply a fixed set of sequences of LTT-style threshold counting recognition
strategies. Effectively, it corresponds to being able to count occurrences of
events up to some threshold, coupled with the capacity to reset the counters
some fixed number of times.

The most useful abstract characterization of the structureof the FO(<)
definable stringsets follows from an automata-theoretic characterization due
to McNaughton and Papert (1971).11 In essence, a stringset is FO(<) defin-
able iff there is some constantn > 0 for which, whenever a string in the set
includes a block of symbols which is iterated at leastn times, then it also
includes all strings which are identical except that that block is iterated an
arbitrary number of times greater thann.

An example of a non-FO(<) definable stringset is the set of strings over
{A, B} in which the number ofBs is even:

(10) Even-B
def
= {w ∈ {A, B}∗ | |w|B = 2i, 0 ≤ i} 6∈ LTT

This set includes strings in whichB is repeated at leastn times, whatever
value the constantn might have. But adding one moreB to that block ofBs
produces a string with an odd number ofBs.

4.5 MSO Definable Stringsets

The next step in increasing the power of our descriptions is to introduce
abstraction—to assign the occurrences of symbols in the strings to abstract
categories and to discriminate between the strings on the basis of the sequence
of categories rather than the sequence of symbols themselves. Categories of
this sort can be captured in logical languages by allowing quantification over
not just individual positions in the strings but over sets ofpositions, i.e, by
addingMonadic Second-Ordervariables along with their quantifiers. An ex-
ample of an MSO definition of a stringset is:

(11)
(∃X0)[ (∀x)[¬(∃y)[y ⊳ x] → X0(x)] ∧

(∀x, y)[x ⊳ y → (X0(x) ↔ ¬(X0(y))] ∧
(∀x)[¬(∃y)[x ⊳ y] → ¬(X0(x))] ]
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This defines the set of all strings that are of even length: it asserts that there is
a subset of positions in the string (X0) which includes the first position in the
string, alternates between inclusion and exclusion of adjacent positions and
does not include the last position.12 This formula can be modified to ignore
everything except positions labeledB, which gives a definition of Even-B.
So MSO is a proper superclass of FO(<).

The assignments of positions in the strings to MSO variablesis equiva-
lent, in a strong sense, to the association of those positions with states in the
runs of Finite State automata. And, in fact, the MSO-definable stringsets are
exactly the Finite State stringsets (Medvedev 1964; Büchi 1960; Elgot 1961).

The abstract character of the MSO definable stringsets is a consequence
of their characterization by Finite State automata. Two strings w andv are
Nerode Equivalentwith respect to a stringsetL over an alphabetΣ (denoted
w ≡L v) iff for all strings u overΣ, wu ∈ L ⇔ vu ∈ L. A stringsetL is
Finite State iff≡L partitions the set of all strings overΣ into finitely many
equivalence classes. These equivalence classes correspond to the categories
(to the distinguished subsets) of the MSO definitions.

Since the MSO definable stringsets extend the FO definable stringsets, the
ability to discriminate between strings based on categorizing the events that
comprise them in this way implies the ability to discriminate between them
based on the multiplicity of theirk-factors, counting up to a fixed thresh-
old. As the definability of Even-B suggests, it extends this to the ability to
distinguish strings based on the residues (remainders) of those multiplicities
relative to some modulus, in essence to count modulo those thresholds, reset-
ting the counters unboundedly often. It is, in fact, equivalent to using a finite
set of counters that count modulo some threshold.

It does not, on the other hand, provide the ability to count arbitrarily high;
the stringset{AnBn | n > 0}, for example, is not MSO definable because the
Nerode equivalence for the set is:
(12)
w ≡AnBn v ⇔ w, v 6∈ {AiBj | i, j ≥ 0} or |w|A − |w|B = |v|A − |v|B .

for which there are infinitely many equivalence classes.
Cognitively, the Finite State stringsets characterize an extremely broad

range of mechanisms: whenever there is a fixed finite bound on the amount
of information a mechanism can retain while processing a string the mecha-
nism will be limited to recognizing at most Finite State—equivalently, MSO
definable—stringsets. Note, though, that the fact that an organism can recog-
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nize non-Finite-State stringsets does not imply that the physical mechanisms
they employ must have access to a store of unbounded size. Themechanisms
may implement an algorithm which, in principle, requires unbounded storage
which fails on sufficiently long or sufficiently complicatedinputs. Or would
if it ever encountered such.

4.6 Beyond Finite State

The ability to recognize stringsets that are not Finite State implies discrimi-
nating between strings on the basis of information about thestring the size of
which depends on the length of the string—being able to countto values that
are proportional to the length of the string, for example. The weakest class
of the Chomsky hierarchy which properly extends the class ofFinite State
stringsets is the class ofcontext freestringsets, those that can be generated
by context free grammars. But there are many ways of utilizing amounts of
information that depend on the length of the string that do not provide the
ability to recognize context free stringsets in general. The single counter that
suffices to recognizeAnBn can also recognize sets of well-nested brackets
(the single bracket Dyck stringsets,D1), but it does not suffice to recognize
D2, the two bracket Dyck stringsets, for example. There are, infact, multiple
hierarchies which partition the context free stringsets just as the sub-regular
hierarchy partitions the Finite State stringsets. Experiments that are intended
to differentiate abilities beyond the Finite State will need to be based on for-
mal analyses of this territory similar to the analysis of thesub-regular hierar-
chy we have provided here.

5 Recognition experiments

[ Table 1 goes here ]
Tables 1 and 2 summarize the conclusions that can be drawn about the

cognitive capabilities of the subjects given the results ofrecognition experi-
ments based on the sub-regular hierarchy.

To test the recognition capabilities of a species relative to these classes
one could use experiments based on patterns such as those given in theEx-
amplecolumn of Table 1. Species with the ability to recognize patterns of that
sort, having been familiarized to strings of the form given in theIn column,
should generally find novel strings of that form unsurprising while finding
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strings of the form given in theOut column surprising. If, on the other hand,
subjects consistently fail to find strings of the form given in theOut column
surprising after being familiarized to strings of the form given in theIn col-
umn, this would be evidence that the target species is unableto distinguish
patterns of that level of complexity.

[ Insert Table 2 here ]
Table 2 summarizes the conclusions that can be drawn from such results.

Recognizeoutcomes represent lower bounds on the species’ capacity. They
indicate that the subject has at least the cognitive capabilities given in the
Cognitive significancecolumn.Fail outcomes represent upper bounds, evi-
dence that the subject is limited in the way indicated in theCognitive signifi-
cancecolumn.

6 Conclusion

Acoustic pattern recognition or artificial language learning experiments pro-
vide a powerful approach to understanding the ontogenetic and evolutionary
building blocks of the human language faculty, distinguishing what is shared
with other species and what is uniquely human. To design experiments of
this sort with highly interpretable results, one must be clear about a bewil-
dering array of formal considerations. These include the cognitive capacities
that the experiment is designed to probe, the abstract structure of the classes
of stringsets that those capabilities characterize, the structure of the stringsets
the intended stringset may be confused with and what such confusion signi-
fies about the capabilities of the subjects.

The subregular hierarchy is a range of complexity classes that correspond
to a range of cognitive capabilities that are, by virtue of the descriptive char-
acteristics of the classes, necessarily relevant to any faculty that processes
aural stimuli solely as sequences of events. As such it provides a clear frame-
work for resolving these issues. We hope that our expositionof this hierarchy
will facilitate continued experimentation of this type.

Notes
1This work was undertaken while the first author was in residence at the Radcliffe Institute

for Advanced Study
2The authors would like to express their gratitude to Geoff Pullum for his extensive col-

laboration on this work and to Barbara Scholz and the referees for their helpful suggestions.
3The expressionx|y denotes the property ofy being an integral multiple ofx.
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4The expression|w| denotes the length of the stringw—the number of symbols it contains.
The expression|w|

A
denotes the number ofAs it contains.

5These two examples are due to Geoffrey K. Pullum.
6Pumping lemmas establish certain types of closure properties of stringsets: if a stringset

includes strings with length exceeding an arbitrary but fixed bound then it also includes strings
in which certain substrings are repeated arbitrarily many times. Shieber (1985) and Huybregts
(1984) employed results of this sort to show that certain dialects of Swiss-German are not
representable as Context Free stringsets.

7These characterize the structure of stringsets in terms of the way in which certain rela-
tions on strings, which depend on the stringset, partition the set of all strings into equivalence
classes.

8We provide concrete examples of what we mean by “nature of theinformation” as we
survey a range of descriptive classes in the next section.

9It is easy to translate an SLk description into ak-expression defining the same stringset,
so LTk is a strict superclass of SLk.

10Again,k-expressions can be easily translated into FO(+1) formulae; so FO(+1) is a strict
superclass of LT.

11A Finite State automaton recognizes an FO(<) stringset iff its syntactic monoid is aperi-
odic.

12The reader should note the similarity between this definition and the SL2 definition of
(AB)n (Equation 2).
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Figure 1: Testing recognition ofAnBn.

Class Example In Out

SL (AB)n (AB)i+j+1 (AB)iBB(AB)j

LT Some-B AiBAj Ai+j+1

FO(+1) One-B AiBAj+k+1 AiBAjBAk

FO(<) B-before-C AiBAjCAk AiCAjBAk

MSO Even-B B2i B2i+1

CF AnBn AnBn An+1Bn−1

Table 1: Distinguishing classes of the sub-regular hierarchy experimentally.
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Class Outcomes Cognitive significance

SL Recognize
(AB)n

Sensitive to a fixed length block of the immediately
prior events

Fail Some-B Only sensitive to the immediately prior events
LT Recognize

Some-B
Sensitive to which fixed length blocks of events oc-
cur in the input, effectively being able to recall se-
quences of events that occur at arbitrary points

Fail One-B Insensitive to multiplicity or order of blocks
FO(+1) Recognize

One-B
Sensitive to the multiplicity of events that occur in
the input, at least up to some fixed threshold

Fail
B-before-C

Insensitive to order of blocks

FO(<) Recognize
B-before-C

Sensitive to the multiplicity, up to some fixed thresh-
old, of events that occur in the input and to the order
in which a fixed number of events occur, in effect
counting to a threshold and resetting the counters up
to a fixed number of times

Fail Even-B Insensitive to order of events beyond some fixed
number

MSO Recognize
Even-B

Capable of classifying the events in the input into
a finite set of abstract categories and sensitive to the
sequence of those categories. Subsumesanyrecogni-
tion mechanism in which the amount of information
retained is limited by a fixed finite bound.

Fail AnBn fixed finite bound, independent of the input, on
amount of information retained

Table 2: Cognitive significance of recognition results.
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