
On Languages Piecewise Testable in the Strict

Sense

James Rogers1, Jeffrey Heinz2⋆, Gil Bailey1, Matt Edlefsen1, Molly Visscher1,
David Wellcome1, and Sean Wibel1

1 Dept. of Computer Science, Earlham College
2 Dept. of Linguistics and Cognitive Science, University of Delaware

Abstract. In this paper we explore the class of Strictly Piecewise lan-
guages, originally introduced to characterize long-distance phonotactic
patterns by Heinz [1] as the Precedence Languages. We provide a series
of equivalent abstract characterizations, discuss their basic properties,
locate them relative to other well-known subregular classes and provide
algorithms for translating between the grammars defined here and finite
state automata as well as an algorithm for deciding whether a regular
language is Strictly Piecewise.

1 Introduction

From the beginning of the generative linguistics program, long-distance depen-
dencies in natural language have attracted considerable interest. For example,
[2] establishes that the long-distance dependencies necessary to describe sen-
tence well-formedness are beyond the reach of finite state methods, and later
work continues to characterize the kinds of non-local dependencies in natural
language in ways which require increasingly expressive formalisms [3–5].

Although many long-distance dependencies in natural language require ex-
pressive formalisms that are at least context-free [2–5], some non-local patterns
in natural language do not. An example from Heinz [1, 6] comes from the sibilant
harmony process of Sarcee, where [-anterior] sibilants like [S] and [Z] regressively
require [+anterior] sibilants like [s] and [z] to assimilate in anteriority, but not
vice versa [7, 8].3 As a consequence of this phonological rule, there are no words
in Sarcee where [-anterior] sibilants may follow [+anterior] sibilants as in (1b),
though the reverse is possible (1a) (data from Cook [7]). In the examples in (1),
witness that words are well-formed when the [+anterior] sibilant [z] follows a
[-anterior] sibilant like [S] in (a) ‘my duck,’ but there are no words in Sarcee
where [-anterior] sibilants like [S] may follow [+anterior] sibilants like [s], as in
the hypothetical example in (1c).

⋆ The author acknowledges the support of a 2008-2009 University of Delaware Research
Fund Grant.

3 Linguistic descriptions of Sarcee (and many other languages with consonantal har-
mony [9, 10]) are clear that agreeing consonants can be arbitrarily distant.

1. a. /si-tSiz-aP/ → S ı́tS ı́dzàP ‘my duck’ c. cf. *śıtS ı́dzàP

b. /na-s-GatS/ → nāSGátS ‘I killed them again’

Heinz [1, 6] observes that these kinds of long-distance dependencies can be de-
scribed according to the well-formedness of subsequences: in Sarcee discontigu-
ous subsequences like [Sz] and [Ss] are well-formed but discontiguous subsequences
like [zS] and [sS] are not (since the phonological rule requires the [s] to become
[S] when followed by [S]).

The Piecewise Testable (PT) languages [11] are a subclass of the regular
languages that can describe this kind of non-local pattern. These languages are
similar, in many respects, to the Locally Testable (LT) languages [12, 13] except
that the two classes differ in how they determine an expression’s well-formedness:
for LT languages, an expression’s well-formedness depends entirely on the set
of contiguous subsequences (up to some length k, known as k-factors) in the
expression, whereas for PT languages, an expression’s well-formedness depends
entirely on the set of subsequences (not necessarily contiguous and up to some
length k) found within the expression.

In fact, Sarcee-like non-local patterns are describable by a proper subclass
of the PT languages, which we call Strictly Piecewise (SP). This name reflects
the fact that the relationship between the SP languages and the PT languages
is precisely analogous to the the relationship between the Strictly Local (SL)
languages and the LT languages [12, 13]. The SP class completes a dual hierarchy
of subregular language classes with the Local branch being characterized by
immediate adjacency (successor) and the Piecewise branch by precedence (less-
than):

– SP and LT are the languages definable as intersections of certain simple
negative constraints, i.e., as conjunctions of complements of atomic formu-
lae which are satisfied by strings that contain a specified subsequence or,
respectively, factor (the so called forbidden subsequences/factors).

– PT and LT are the languages definable by arbitrary propositional formulae
of this sort.

– The Star Free (SF) languages and the Locally Threshold Testable (LTT)
languages are the languages that First-Order (FO) definable over sequences
with less-than and successor, respectively. Since successor is FO definable
from less-than, LTT is a subclass of SF.

– The Regular languages are those that are Monadic Second-Order (MSO)
definable over sequences with either less-than or successor.

Strikingly, SP turns out to be exactly the class of languages which are closed
under subsequence.

The structure of the paper is as follows. Section 2 defines basic notation.
Section 3 reviews the Piecewise Testable languages. Most of the results in this
section are well-known (see [11], [14], [15], [16], [17]); the rest are probably best
attributed to folklore. The primary contributions of this paper are in Sections 4
and 5. Section 4 defines the Strictly Piecewise Testable languages, explores some
of their properties and provides a number of abstract characterizations of the

class. Section 5 presents algorithms for extracting a SPk grammar from a minimal
Deterministic Finite-State Automaton (DFA) recognizing a SPk language and
for constructing a minimal DFA recognizing an SPk language from its grammar.
Together these provide an algorithm for deciding if an arbitrary regular language
is SP and, if it is, for determining the least k for which it is SPk. In section 6
we consider the parallels between the Piecewise Testable and Locally Testable
hierarchies from a descriptive perspective.

2 Preliminaries

We start with some mostly standard notation. P(S) denotes the power set of
the set S; S1 − S2 set-theoretic difference. Σ denotes a finite set of symbols
and a string over Σ is a finite sequence of symbols drawn from that set. Σk,
Σ≤k, Σ∗ denote all strings over this alphabet of length k, of length less than or
equal to k, and of any finite length, respectively. ǫ denotes the empty string. |w|
denotes the length of string w and |w|σ denotes the number of occurrences of
σ ∈ Σ in w. A language L is a subset of Σ∗; L its complement relative to Σ∗.
Concatenation of sets of strings is denoted L1 · L2 = {uv | u ∈ L1 and v ∈ L2}.
When discussing partial functions, we use the notation ↑ and ↓ to indicate that
the function is undefined, respectively is defined, for some particular arguments.

A Deterministic Finite-state Automaton (DFA) is a tuple M = 〈Q, Σ, q0, δ, F 〉
where Q is the state set, Σ is the alphabet, q0 is the start state, δ is a determin-
istic transition function and F is the set of accepting states. Let δ̂ : Q×Σ∗ → Q

be the (partial) path function of M, i.e., δ̂(q, w) is the (unique) state reachable

from state q via the sequence w, if any, or δ̂(q, w)↑ otherwise. The language

recognized by a DFA M is L(M)
def
= {w ∈ Σ∗ | δ̂(q0, w)↓ ∈ F}.

Two strings w and v over Σ are distinguished by a DFA M iff δ̂(q0, w) 6=

δ̂(q0, v). They are Nerode equivalent with respect to a language L if and only
if wu ∈ L ⇐⇒ vu ∈ L for all u ∈ Σ∗. All DFAs which recognize L must
distinguish strings which are inequivalent in this sense, but no DFA recognizing
L necessarily distinguishes any strings which are equivalent. Hence the number
of equivalence classes of strings over Σ modulo Nerode equivalence with respect
to L gives a (tight) lower bound on the number of states required to recognize L.
A DFA is minimal if the size of its state set is minimal among DFAs accepting
the same language. A minimal DFA is trimmed if the (unique) sink state has
been removed. The reader is referred to [18] for details.

The relation between strings which is fundamental to Piecewise Testability
is the subsequence relation, which is a partial order on Σ∗:

w ⊑ v
def
⇐⇒ w = ε or w = σ1 · · ·σn and (∃w0, . . . , wn ∈ Σ∗)[v = w0σ1w1 · · ·σnwn].

in which case we say w is a subsequence of v. The subsequence relation is com-
patible with concatenation: w1 ⊑ v1 and w2 ⊑ v2 implies that w1w2 ⊑ v1v2.

For w ∈ Σ∗, let

Pk(w)
def
= {v ∈ Σk | v ⊑ w} and P≤k(w)

def
= {v ∈ Σ≤k | v ⊑ w},

the set of subsequences of length k, respectively length no greater than k, of w.
Let Pk(L) and P≤k(L) be the natural extensions of these to sets of strings. Note
that P0(w) = {ε}, for all w ∈ Σ∗, that P1(w) is the set of symbols occurring in
w and that P≤k(L) is finite, for all L ⊆ Σ∗.

3 Piecewise Testable Languages

The class of Piecewise Testable languages (PT) was introduced by Simon [11]
as the Boolean closure of the class of languages of the form Σ∗σ1Σ

∗ · · ·Σ∗σnΣ∗

where σ1 · · ·σn is a possibly empty word in Σ∗.
Following Sakarovitch and Simon [14], Lothaire [15] and Kontorovich, et

al., [16] we call the set of strings that contain w as a subsequence the (prin-
cipal) shuffle ideal4 of w:

SI(w) = {v ∈ Σ∗ | w ⊑ v}.

Then the class of Piecewise Testable (PT) languages is the smallest class of lan-
guages including SI(w) for all w ∈ Σ∗ and closed under Boolean operations.
Similarly, the class of k-Piecewise Testable (PTk) languages is the smallest class
of languages including SI(w) for all w ∈ Σ≤k and closed under Boolean opera-
tions.

Extending the notion of shuffle ideal to languages, SI(L) is the closure of L

under inverse ⊑:
SI(L) = {v ∈ Σ∗ | ∃w ∈ L, w ⊑ v}

From a model-theoretic perspective, PTk is the class of languages definable
by propositional formulae in which the atomic formulae are strings in Σ≤k with
a string w ∈ Σ∗ satisfying a formula p ∈ Σ≤k iff w ∈ SI(p). PT is the class of
languages definable by arbitrary finite formulae of this type.

The class of Piecewise Testable languages has a well-known characterization
(sometimes taken to be its definition):

Theorem 1. L ⊆ Σ∗ is in the class PT iff there exists some k such that, for
all w, v ∈ Σ∗,

P≤k(w) = P≤k(v) ⇒ (w ∈ L ⇔ v ∈ L).

Since P≤k(Σ∗) is finite for all k and Σ, one consequence of this characteri-
zation is that a language is in PT iff it is the union of a finite set of equivalence

classes modulo the relation w ≡k v
def
⇐⇒ P≤k(w) = P≤k(v). Given this, we can

take a PTk language to be generated by a finite set of subsets of Σ≤k.

Definition 1 (PTk Grammar). A PTk grammar is a pair G = 〈Σ, T 〉 where
T ⊆ P(Σ≤k). The language licensed by a PTk grammar is

L(G)
def
= {w ∈ Σ∗ | P≤k(w) ∈ T}.

4 Properly SI(w) is the principal ideal generated by {w} wrt the inverse of ⊑.

Note that L(G) = ∅ iff T = ∅ and ε ∈ L(G) iff {ε} ∈ T .

Theorem 2. The classes PTk form a proper hierarchy in k: (∀k)[PTk (PTk+1].

The inclusion follows from the fact that ≡k+1 is a refinement of ≡k. To see that
it is proper, let

L≤kb
def
= {w ∈ {a, b}∗ | |w|b ≤ k}.

This is not in PTk since P≤k(bk) = P≤k(bk+1). On the other hand, it is in PTk+1

since it is the complement of SI(bk+1).

Theorem 3. The class of finite languages is a proper subset of the class of
Piecewise Testable languages.

Any singleton set {w} is PT|w|+1, being the intersection of SI(w) and all SI(v)

for v ∈ Σ|w|+1. Hence every finite set L is in PTk for every k greater than the
longest string in L. On the other hand, there is no k for which the class of finite
languages is included in PTk.

Theorem 4. PT and PTk, for any k > 0, are not closed under concatenation.

The languages L≤kb = L≤(k−1)b · L≤1b witness that PTk is not closed under
concatenation. For the general case consider the language Lawb = {a} · Σ∗ ·
{b}. This is the concatenation of three PT2 languages, but it is not, itself, PT.
Suppose, by way of contradiction, that it was PT. Then it would be PTk for
some k. But then the string (ab)k ∈ Lawb while (ab)ka 6∈ Lawb despite the fact
that P≤k((ab)k) = P≤k({a, b}∗) = P≤k((ab)ka), contradicting Theorem 1.

Theorem 5 (Simon 1975). The class of Piecewise Testable languages is a
proper subset of the class of Star-Free languages: PT (SF.

SI(w), where w = σ1σ2 · · ·σ|w|, is denoted by the SF expression

∅ · σ1 · ∅ · · · · · ∅ · σ|w| · ∅.

and SF is closed under Boolean operations. That the inclusion is proper is wit-
nessed by the fact that Lawb ∈ SF.

Theorem 6. The class of Star-Free languages is the closure of the class of Piece-
wise Testable languages under concatenation and Boolean operations.

SF is the closure of the class of Finite languages under union, concatenation and
complement (hence concatenation and Boolean operations).

4 Strictly Piecewise Languages

Languages that are Locally Testable in the Strict Sense (Strictly Local, SL)
are defined only in terms of the set of k-factors which are licensed to occur
in the string (equivalently the complement of that set with respect to Σ≤k,
the forbidden factors) [12]. In this section we introduce the class of languages
obtained by the analogous restriction to PT, which we call Piecewise Testable
in the Strict Sense (Strictly Piecewise, SP).

Definition 2 (SPk Grammar). A SPk grammar is a pair G = 〈Σ, T 〉 where
T ⊆ Σk. The language licensed by a SPk grammar is

L(G)
def
= {w ∈ Σ∗ | P≤k(w) ⊆ P≤k(T)}.

A language is SPk iff it is L(G) for some SPk grammar G. It is SP iff it is SPk

for some k.

The SP languages have a variety of characteristic properties.

Theorem 7. The following are equivalent:

1. L =
⋂

w∈S [SI(w)], S finite,

2. L ∈ SP,

3. (∃k)[P≤k(w) ⊆ P≤k(L) ⇒ w ∈ L],

4. w ∈ L and v ⊑ w ⇒ v ∈ L (L is subsequence closed),

5. L = SI(X), X ⊆ Σ∗ (L is the complement of a shuffle ideal).

Proof. These are each almost immediate consequences of their predecessors.

That 1 implies 2 is witnessed by the SPk grammar 〈Σ, Σ≤k − S〉, where k is
the maximum length of the strings in S.

To see that 2 implies 3, suppose that L ∈ SP. Then L ∈ SPk for some k

and there is some Σ and T ⊆ Σ≤k for which L = {w ∈ Σ∗ | P≤k(w) ⊆ P≤k(T)}.
Then P≤k(L) =

⋃

w∈L[P≤k(w)] ⊆ P≤k(T). That L is closed under Property 3
follows immediately.

That 3 implies 4 follows from the fact that v ⊑ w ∈ L ⇒ P≤k(v) ⊆ P≤k(w) ⊆
P≤k(L).

That 4 implies 5 follows immediately from the definition of SI(X) since clo-
sure of L under subsequence implies that L is closed under inverse subsequence.

Finally, 5 implies 1 by DeMorgan’s theorem and the fact that every shuffle
ideal is finitely generated, which is a consequence of the fact that there are no
infinite sequences of strings over a fixed alphabet which are pairwise unrelated
by subsequence.5

5 This is Theorem 6.12 of Lothaire [15], although Lothaire attributes the general prin-
ciple to Higman [19].

Corollaries: If L ∈ SPk then:

1. wv ∈ L ⇒ w, v ∈ L (Prefix and Suffix closure),
2. P1(L) ⊆ L (Unit strings) and
3. L 6= ∅ ⇒ ε ∈ L (Empty string).

Theorem 8 (Proper Hierarchy). (∀k)[SPk (SPk+1].

Inclusion follows from Property 3 of Theorem 7 along with the fact that P≤k(w) =
P≤k(P≤k+1(w)).6 The same sequence of languages that witnesses separation of
the PTk classes witnesses separation of the SPk classes.

Theorem 9. SP and SPk, for any k > 0, are closed under intersection and
(in a trivial sense) Kleene closure. SPk is not closed under union or concate-
nation, although SP is closed under both. Neither SP nor SPk are closed under
complement or intersection with Regular languages.

Proof. Closure under intersection follows immediately from Property 1 of The-
orem 7.

Non-closure of SPk under union is witnessed by the language L = L<ka ∪
L<kb = {w ∈ Σ∗ | |w|a < k or |w|b < k} This is the union of two SLk sets, but
it is not, itself, SLk since P≤k(akbk) ⊆ P≤k(L). For concatenation, note that
L≤(k−1)b and L≤1b are both SLk but L≤(k−1)b · L≤1b = L≤kb 6∈ SLk.

Closure of SP under union, intersection and concatenation follows nearly
immediately from the equivalence of SP with the class of languages that are
closed under subsequence.

Since all SPk languages include all symbols occurring in the strings of the
set as unit strings, if L ∈ SPk then L∗ = P1(L)∗, i.e., L∗ is the set of all strings
over that subset of the alphabet which actually occurs in strings in L.

Non-closure of SP (hence SPk) under complement follows from the fact that
no non-trivial shuffle ideal is closed under subsequence. Non-closure under in-
tersection with Regular sets is witnessed by the fact that no non-empty subset
of {ε} is closed under subsequence.

Theorem 10. PT (respectively, PTk) is the closure of SP (respectively, SPk)
under Boolean operations.

That every SPk language is PTk follows from Theorem 1 and Property 3 of
Theorem 7. That every PTk language is a Boolean combination of SPk languages
follows from the fact that SI(w), for any w ∈ Σ∗ is the complement of a SP|w|

language.
It’s striking that, while PT is the closure of SP under Boolean operations,

the latter is closed under concatenation while the former is not.

6 It should be noted, though, that the language licensed by 〈Σ, T 〉 as an SPk+1 gram-
mar is not equal to that licensed by 〈Σ, T 〉 as an SPk grammar, since T ⊆ Σk implies
that no string of length greater than k will be licensed in the SPk+1 sense.

5 SP and the Regular Languages

Since SP ⊆ PT ⊆ Star-Free ⊆ Regular every SP language is recognizable by
a Deterministic Finite-State Automaton (DFA). Theorem 7 has a number of
consequences for the structure of the trimmed, minimal DFAs which recognize
SP languages. In particular, let M = 〈Q, Σ, q0, δ, F 〉 be a trimmed minimal DFA
for which L(M) ∈ SPk. Then:

– All states of M are accepting states: F = Q.
– For all q1, q2 ∈ Q and σ ∈ Σ, if δ̂(q1, σ)↑ and δ̂(q1, w) = q2 for some w ∈ Σ∗

then δ̂(q2, σ)↑. (Missing edges propagate down.)
– All cycles are self-edges.
– For all q1, q2 ∈ Q and u, v, w ∈ Σ∗, if δ̂(q0, w) = q1, δ̂(q1, v) = q2 and q1 6= q2

then:
• (∃u ∈ Σ∗)[δ̂(q0, wu)↓ and δ̂(q0, wvu)↑] and

• (∀u ∈ Σ∗)[δ̂(q0, wvu)↓ ⇒ δ̂(q0, wu)↓]

Lemma 1. Let M = 〈Q, Σ, q0, δ, F 〉 be a trimmed, minimal DFA for which

L(M) ∈ SPk. Then P≤k(L(M)) = {w ∈ Σ≤k | δ̂(q0, w)↓}.

This follows from closure under subsequence.
Lemma 1 provides an algorithm which, given a DFA that recognizes an SPk

language, constructs the SPk grammar for that language. One simply does a
search of the transition graph of the DFA with the depth limited to k, recording
the strings labeling the paths traversed. The time complexity of this algorithm
is Θ(card(Σ)k). Note that this construction will yield some SPk grammar given
any M; that grammar will license L(M) iff L(M) is SPk.

Lemma 2. Suppose w ∈ Σk, w = σ1 · · ·σk.
Let MSI(w) = 〈Q, Σ, q0, δ, F 〉, where Q = {i | 1 ≤ i ≤ k}, q0 = 1, F = Q and for

all qi ∈ Q, σ ∈ Σ:

δ(qi, σ) =

qi+1 if σ = σi and i < k,

↑ if σ = σi and i = k,

qi otherwise.

Then MSI(w) is a minimal, trimmed DFA that recognizes the complement of

SI(w), i.e., SI(w) = L(MSI(w)).

Lemma 2 provides the foundation for an algorithm which, given an SPk

grammar 〈Σ, T 〉 for a language L, constructs a minimal, trimmed DFA which
recognizes L. One constructs the trimmed, minimal DFA for SI(w) for each
w ∈ Σ≤k − P≤k(T), and then constructs the trimmed, minimal DFA for their
intersection. The complexity of this algorithm is Θ(card(Σ)k) (since card(T) =
Θ(card(Σ)k, worst case).

Together, Lemmas 1 and 2, applied alternately for increasingly large k provide
a mechanism for determining the least k for which L(M) ∈ SPk if, in fact, there
is such a k. All that remains is to determine a bound on the size of the k for
which L(M) could be SPk.

Lemma 3. Suppose L ∈ SPk − SPk−1. Then every DFA that recognizes L has
at least k states.

L ∈ SPk − SPk−1 implies that there is at least one w ∈ Σk such that SI(w)∩L =
∅ but for all proper subsequences v of w it is the case that SI(v)∩L 6= ∅. In fact,
since SPk languages are closed under subsequence v itself must be in L.

Suppose v1 and v2 are distinct proper prefixes of w, |v1| < |v2|. Then there is
some u such that v2u = w 6∈ L. On the other hand, v1u is a proper subsequence
of w and thus, by choice of w, v1u ∈ L.

Hence none of the k proper prefixes of w are Nerode equivalent (with respect
to L) to each other or to w and any DFA recognizing L will need to distinguish
at least k + 1 classes of strings, hence have at least k states.

Theorem 11. There is an algorithm which, given any Regular language L, de-
cides if L is SP and, if it is, determines the least k for which L is SPk and
returns an SPk grammar for L.

Assume, wlog, that L is presented as a trimmed, minimal DFA. The algorithm
constructs potential SPk grammars for increasing k using Lemma 1 and con-
structs trimmed, minimal DFAs for each using Lemma 2. The first grammar
constructed in this way that is isomorphic to the DFA for L will be an SPk

grammar for the least k for which L is SPk. By Lemma 3, if no such DFA is
found for k ≤ card(Q) then L is not SPk for any k.

The time complexity of this algorithm is Θ(card(Σ)card(Q)), i.e., it is expo-
nential time. This, however, turns out to be optimal for algorithms that actually
construct an SPk grammar for L.

Theorem 12. Suppose L ∈ SP. Let card(Q) be the size of the state set of a
trimmed, minimal DFA recognizing L. Then the worst case size of the grammar

for L is Θ(card(Σ)card(Q)).

By Lemma 3, no grammar for an SP language can be larger than card(Σ)card(Q),
where Q is the state set of a trimmed minimal DFA recognizing that language.
By Lemma 2, grammars of that size do exist.

6 Dual Subregular Hierarchies

The hierarchy of Local classes of languages has a very attractive model-theoretic
characterization. The class of Strictly Local languages is properly extended by
the class of Locally Testable languages, which is the class of languages definable
by propositional formulae in which the atomic formulae are blocks of symbols
interpreted as factors of the string. This is properly extended by the class of
Locally Threshold Testable languages, which is the class of languages definable
by First-Order formulae with adjacency (successor) but not precedence (less-
than). This is properly extended by the class of Regular languages, which is
the class of languages definable by Monadic Second-Order formulae with either

SL SP

LT PT

LTT

SF

FO

Reg MSO

Prop

+1 <

Fig. 1. Parallel Sub-regular Hierarchies.

adjacency or precedence, equivalently with both (since they are MSO definable
from each other).

As we have seen here, the Piecewise classes provide a parallel sequence of
classes. The class of SP languages corresponds to the Strictly Local languages,
except that they are defined in terms of subsequences rather than factors. This is
extended by the class of PT languages, which is the class of languages definable
over propositional formulae in which the atomic formulae are blocks of symbols
interpreted as subsequences of the string. Hence PT corresponds to LT except
that, again, it is defined in terms of subsequences rather than factors. The class
of languages definable by First-Order formulae with precedence, corresponding
to LTT on the adjacency side, is the class of Star-Free sets. Since adjacency is FO
definable from precedence, LTT is actually a (proper) subclass of SF. Finally, the
two branches become indistinguishable at the MSO level in the class of Regular
languages.7

7 Conclusion

We have characterized the Strictly Piecewise languages and presented their basic
properties. Additionally, it was shown that SP languages complete a subregular
hierarchy based on precedence in the same way the Local classes form a hierarchy
based on adjacency. We have also provided algorithms for translating between
the SP grammars defined here and finite state automata, as well as an algorithm
for deciding if some regular language is SP.

The theoretical contributions above provide a better understanding of lin-
guistic, cognitive, and natural language processing models. We have already

7 Interestingly, it can also be said that they join at the bottom of the hierarchy as
well, since SP1 and SL1 both contain just ∅ and Γ ∗ for each Γ ⊆ Σ.

mentioned the capability of the SP languages to describe certain kinds of phono-
tactic patterns [1, 6]. The introductory Sarcee pattern, for example, is given by
a SP2 grammar which only prohibits subsequences consisting of a [+anterior]
sibilant followed by a [-anterior] sibilant. Interestingly, SP languages also appear
in models of reading comprehension [20, 21] as well as in text classification [22,
23] (see also Shawe-Taylor [24, chap. 11]). We hope that this paper continues to
spur interest in the utility and beauty of languages described piecewise.

References

1. Heinz, J.: The Inductive Learning of Phonotactic Patterns. PhD thesis, University
of California, Los Angeles (2007)

2. Chomsky, N.: Three models for the description of language. I.R.E. Transactions
on Information Theory IT-2 (September 1956) 113–123 Reprinted in Readings in

Mathematical Psychology, Volume II, ed. by R. Duncan Luce, Robert R. Bush, and
Eugene Galanter, 105–124; New York: John Wiley & Sons, 1965.

3. Joshi, A.K.: Tree-adjoining grammars: How much context sensitivity is required to
provide reasonable structural descriptions? In Dowty, D., Karttunen, L., Zwicky,
A., eds.: Natural Language Parsing. Cambridge University Press (1985) 206–250

4. Shieber, S.: Evidence against the context-freeness of natural language. Linguistics
and Philosophy 8 (1985) 333–343

5. Kobele, G.: Generating Copies: An Investigation into Structural Identity in Lan-
guage and Grammar. PhD thesis, University of California, Los Angeles (2006)

6. Heinz, J.: Learning long distance phonotactics. Submitted manuscipt (2008)
7. Cook, E.D.: The synchronic and diachronic status of Sarcee g

y. International
Journal of American Linguistics 4 (1978) 192–196

8. Cook, E.D.: A Sarcee Grammar. University of British Columbia Press (1984)
9. Hansson, G.: Theoretical and typological issues in consonant harmony. PhD thesis,

University of California, Berkeley (2001)
10. Rose, S., Walker, R.: A typology of consonant agreement as correspondence. Lan-

guage 80(3) (2004) 475–531
11. Simon, I.: Piecewise testable events. In: Automata Theory and Formal Languages:

2nd Grammatical Inference conference, Berlin ; New York, Springer-Verlag (1975)
214–222

12. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press (1971)
13. Rogers, J., Pullum, G.: Aural pattern recognition experiments and the subregu-

lar hierarchy. In Kracht, M., ed.: Proceedings of 10th Mathematics of Language
Conference. (2007) 1–7 University of California, Los Angeles.

14. Sakarovitch, J., Simon, I.: Subwords. In Lothaire, M., ed.: Combinatorics on Words.
Volume 17 of Encyclopedia of Mathematics and Its Applications. Addison-Wesley,
Reading, Massachusetts (1983) 105–134

15. Lothaire, M., ed.: Combinatorics on Words. Cambridge University Press, Cam-
bridge, UK, New York (1997)

16. Kontorovich, L.A., Cortes, C., Mohri, M.: Kernel methods for learning languages.
Theoretical Computer Science 405(3) (2008) 223 – 236

17. Trahtman, A.: Piecewise and local threshold testability of DFA. In Freivalds,
R., ed.: Fundamentals of Computation Theory, 13th International Symposium,
FCT2001, New York, Springer (2001) 347–358

18. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley (2001)

19. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the
London Mathmatical Society 2 (1952) 326–336

20. Grainger, J., Whitney, C.: Does the huamn mnid raed wrods as a wlohe? Trends
in Cognitive Science 8 (2004) 58–59

21. Whitney, C., Cornelissen, P.: SERIOL reading. Language and Cognitive Processes
23 (2008) 143–164

22. Lodhi, H., Cristianini, N., Shawe-Taylor, J., Watkins, C.: Text classification using
string kernels. Journal of Machine Language Research 2 (2002) 419–444

23. Cancedda, N., Gaussier, E., Goutte, C., Renders, J.M.: Word-sequence kernels.
Journal of Machine Learning Research 3 (2003) 1059–1082

24. Shawe-Taylor, J., Christianini, N.: Kernel Methods for Pattern Analysis. Cam-
bridge University Press (2005)

