
2: Application Layer 1 

Chapter 2: Application layer 

 2.1 Principles of 
network applications 

 2.2 Web and HTTP 

 2.3 FTP  

 2.4 Electronic Mail 
 SMTP, POP3, IMAP 

 2.5 DNS 

 

 2.6 P2P applications 

 2.7 Socket programming 
with TCP 

 2.8 Socket programming 
with UDP 



2: Application Layer 2 

HTTP 

Uses TCP: 
 client initiates TCP 

connection (creates socket) 
to server,  port 80 

 server accepts TCP 
connection from client 

 HTTP messages (application-
layer protocol messages) 
exchanged between browser 
(HTTP client) and Web 
server (HTTP server) 

 Server closes the connection 
after delivering the 
messages 

HTTP is “stateless” 
 server maintains no 

information about 
past client requests 

Protocols that maintain 
“state” are complex! 

 past history (state) must 
be maintained 

 if server/client crashes, 
their views of “state” may 
be inconsistent, must be 
reconciled 

 

aside 



HTTP overview (continued) 

 HTTP: Hypertext Transfer Protocol 

 

 Resources on the web: multimedia content, applications, 
images, text files, query result, dynamically generated script 
etc 

 

 A resource can be identified by a URL 

 

 Acts like FTP and SMTP – faster than SMTP 

 

 Server might keep a record of access logs in its own memory 
or stores cookies (information concerning the client, last 
visit info etc) on the client’s machine 

2: Application Layer 3 



2: Application Layer 4 

HTTP connections 

Nonpersistent HTTP 

 At most one object is 
sent over a TCP 
connection. 

 

Persistent HTTP 

 Multiple objects can 
be sent over single 
TCP connection 
between client and 
server. 

 



2: Application Layer 5 

Nonpersistent HTTP 
Suppose user enters URL 

www.someSchool.edu/someDepartment/home.index 

1a. HTTP client initiates TCP 
connection to HTTP server 
(process) at 
www.someSchool.edu on port 80 

2. HTTP client sends HTTP 
request message (containing 
URL) into TCP connection 
socket. Message indicates 
that client wants object 
someDepartment/home.index 

1b. HTTP server at host 
www.someSchool.edu waiting 
for TCP connection at port 80.  
“accepts” connection, notifying 
client 

3. HTTP server receives request 
message, forms response 
message containing requested 
object, and sends message 
into its socket 

time 

(contains text,  

references to 10  

jpeg images) 



2: Application Layer 6 

Nonpersistent HTTP (cont.) 

5. HTTP client receives response 
message containing html file, 
displays html.  Parsing html 
file, finds 10 referenced jpeg  
objects 

6. Steps 1-5 repeated for each 
of 10 jpeg objects 

4. HTTP server closes TCP 
connection.  

time 



2: Application Layer 7 

Non-Persistent HTTP: Response time 

Definition of RTT: time for 
a small packet to travel 
from client to server 
and back. 

Response time: 

 one RTT to initiate TCP 
connection 

 one RTT for HTTP 
request and first few 
bytes of HTTP response 
to return 

 file transmission time 

time to  
transmit  
file 

initiate TCP 
connection 

RTT 

request 
file 

RTT 

file 
received 

time time 

total = 2RTT+transmit time 

 



2: Application Layer 8 

Persistent HTTP 

Nonpersistent HTTP issues: 

 requires 2 RTTs per object 

 OS overhead for each TCP 
connection 

 browsers often open parallel 
TCP connections to fetch 
referenced objects 

 

 

 

Persistent  HTTP 

 server leaves connection 
open after sending 
response 

 subsequent HTTP messages  
between same 
client/server sent over 
open connection 

 client sends requests as 
soon as it encounters a 
referenced object 

 as little as one RTT for all 
the referenced objects 



2: Application Layer 9 

HTTP message structures 

 two types of HTTP messages: request, response 

 
 structure is similar  

 an initial line (different for request and response) 
 zero or more header lines   

• each header name on a separate line  in the form Header1: value1 

 a blank line (i.e. CRLF) 
 an optional message body (e.g. a file, query data or query 

output) 



2: Application Layer 10 

HTTP request message 

 HTTP request message: 
 ASCII (human-readable format) 

GET /somedir/page.html HTTP/1.1 

Host: www.someschool.edu  

User-agent: Mozilla/4.0 

Connection: close  

Accept-language:fr  

 

(extra carriage return, line feed)  

Method (GET,  
POST, HEAD) 

header 
 lines 

Carriage return,  
line feed  

indicates end  
of message 

Resource name along 
with its path (URI) 

://Host:Port/Path 

initial 
request line 

HTTP version 



2: Application Layer 11 

HTTP request message: general format 



2: Application Layer 12 

Uploading form input 

Post method: 

 Web page often 
includes form input 

 Input is uploaded to 
server in entity body 

URL method: 

 Uses GET method 

 Input is uploaded in 
URL field of request 
line: 

 
www.somesite.com/animalsearch?monkeys&banana 



2: Application Layer 13 

Method types 

HTTP/1.0 

 GET 

 POST 

 HEAD 
 asks server to leave 

requested object out of 
response 

HTTP/1.1 

 GET, POST, HEAD 

 PUT 
 uploads file in entity 

body to path specified 
in URL field 

 DELETE 
 deletes file specified in 

the URL field 



2: Application Layer 14 

HTTP response message 

HTTP/1.1 200 OK  

Connection close 

Date: Thu, 06 Aug 1998 12:00:15 GMT  

Server: Apache/1.3.0 (Unix)  

Last-Modified: Mon, 22 Jun 1998 …...  

Content-Length: 6821  

Content-Type: text/html 

  

data data data data data ...  

status line 

header 
 lines 

data, e.g.,  
requested 
HTML file 

HTTP version  
Response  

status code English phrase describing  

the status code 



2: Application Layer 15 

HTTP response status codes 

200 OK 
 request succeeded, requested object later in this message 

301 Moved Permanently 
 requested object moved, new location specified later in 

this message (Location:) 

400 Bad Request 
 request message not understood by server 

404 Not Found 
 requested document not found on this server 

505 HTTP Version Not Supported 

The numbers are meant to be computer readable 

A few sample codes: 



2: Application Layer 16 

Trying out HTTP (client side) for yourself 

1. Telnet to your favorite Web server: 
 

Opens TCP connection to port 80 
(default HTTP server port) at cis.poly.edu. 
Anything typed in sent  
to port 80 at cis.poly.edu 

telnet cis.poly.edu 80 

2. Type in a GET HTTP request: 
 
GET /~ross/ HTTP/1.1 

Host: cis.poly.edu 

By typing this in (hit carriage 
return twice), you send 
this minimal (but complete)  
GET request to HTTP server 

3. Look at response message sent by HTTP server! 



2: Application Layer 17 

User-server state: cookies 

Many major Web sites 
use cookies 

Four components: 
1) cookie header line of 

HTTP response message 
2) cookie header line in 

HTTP request message 
3) cookie file kept on 

user’s host, managed by 
user’s browser 

4) back-end database at 
Web site 

Example: 

 Susan always access 
Internet always from PC 

 visits specific e-
commerce site for first 
time 

 when initial HTTP 
requests arrives at 
server, server creates:  

 unique ID 

 entry in backend 
database for ID 



2: Application Layer 18 

Cookies: keeping “state” (cont.) 

client server 

usual http response msg 

usual http response msg 

cookie file 

one week later: 

usual http request msg 
cookie: 1678 cookie- 

specific 
action 

access 

ebay 8734 
usual http request msg Amazon server 

creates ID 
1678 for user create 

    entry 

usual http response  
Set-cookie: 1678  

ebay 8734 

amazon 1678 

usual http request msg 
cookie: 1678 cookie- 

spectific 
action 

access 
ebay 8734 

amazon 1678 

backend 
database 



2: Application Layer 19 

Cookies (continued) 

What cookies can bring: 

 authorization 

 shopping carts 

 recommendations 

 user session state 
(Web e-mail) 

Cookies and privacy: 

 cookies permit sites to 
learn a lot about you 

 you may supply name 
and e-mail to sites 

aside 

How to keep “state”: 

 protocol endpoints: maintain state 
at sender/receiver over multiple 
transactions 

 cookies: http messages carry state 



2: Application Layer 20 

Web caches (proxy server) 

 user sets browser: 
Web accesses via  
cache 

 browser sends all 
HTTP requests to 
cache 
 object in cache: cache 

returns object  

 else cache requests 
object from origin 
server, then returns 
object to client 

Goal: satisfy client request without involving origin server 

client 

Proxy 
server 

client 
origin  
server 

origin  
server 



HTTP Proxies … 

 Proxy have a valid IP address 

 Client machines need not have permanent IP 
addresses and this way every client machine in a 
private network does not have to have a valid IP 
addresses 

 

 Also keeps tracks of the kinds of sites the 
members of an organization are looking at 

 

 A proxy be may use another proxy 

2: Application Layer 21 



2: Application Layer 22 

More about Web caching 

 cache acts as both 
client and server 

 typically cache is 
installed by ISP 
(university, company, 
residential ISP) 

Why Web caching? 

 reduce response time 
for client request 

 reduce traffic on an 
institution’s access 
link. 

 Internet dense with 
caches: enables “poor” 
content providers to 
effectively deliver 
content (but so does 
P2P file sharing) 



2: Application Layer 23 

Caching example  

Assumptions 
 average object size = 100,000 

bits 

 avg. request rate from 
institution’s browsers to origin 
servers = 15/sec 

 delay from institutional router 
to any origin server and back 
to router  = 2 sec 

Consequences 
 utilization on LAN = 15% 

 utilization on access link = 100% 

 total delay   = Internet delay + 
access delay + LAN delay 

  =  2 sec + minutes + milliseconds 

 

 

origin 
servers 

public 
 Internet 

institutional 
network 10 Mbps LAN 

1.5 Mbps  
access link 

institutional 
cache 



2: Application Layer 24 

Caching example (cont) 

possible solution 
 increase bandwidth of access 

link to, say, 10 Mbps 

consequence 
 utilization on LAN = 15% 

 utilization on access link = 15% 

 Total delay   = Internet delay + 
access delay + LAN delay 

  =  2 sec + msecs + msecs 

 often a costly upgrade 

 

 

origin 
servers 

public 
 Internet 

institutional 
network 10 Mbps LAN 

10 Mbps  
access link 

institutional 
cache 



2: Application Layer 25 

Caching example (cont) 

possible solution: install 
cache 

 suppose hit rate is 0.4 

consequence 
 40% requests will be 

satisfied almost immediately 
 60% requests satisfied by 

origin server 
 utilization of access link 

reduced to 60%, resulting in 
negligible  delays (say 10 
msec) 

 total avg delay   = Internet 
delay + access delay + LAN 
delay   =  .6*(2.01) secs  + 
.4*milliseconds < 1.4 secs 

 

origin 
servers 

public 
 Internet 

institutional 
network 10 Mbps LAN 

1.5 Mbps  
access link 

institutional 
cache 



2: Application Layer 26 

Conditional GET 

 Goal: don’t send object if 
cache has up-to-date cached 
version 

 cache: specify date of 
cached copy in HTTP request 
If-modified-since: 

<date> 

 server: response contains no 
object if cached copy is up-
to-date:  
HTTP/1.0 304 Not 

Modified 

cache server 

HTTP request msg 
If-modified-since: 

<date> 

HTTP response 
HTTP/1.0  

304 Not Modified 

object  
not  

modified 

HTTP request msg 
If-modified-since: 

<date> 

HTTP response 
HTTP/1.0 200 OK 

<data> 

object  
modified 


