Chapter 2: Application layer

J 2.1 Principles of 3 2.6 P2P applications
network applications 0 2.7 Socket programming
0 2.2 Web and HTTP with TCP
0 2.3 FTP 0 2.8 Socket programming
7 2.4 Electronic Mail with UDP
< SMTP, POP3, IMAP
J 2.5 DNS

2: Application Layer 1

Chapter 2: Application Layer

Our goals: 0 programming network
O conceptual, applications
implementation + socket APT

aspects of network

A 3 learn about protocols
application protocols

by examining popular

« client-server application-level
paradigm pr'o’rocols

<+ peer-fo-peer o HTTP
paradigm + FTP

+ transport-layer + SMTP / POP3 / IMAP
service models + DNS

2: Application Layer 2

Some network apps

3 e-mail 3 voice over IP
3 web 3 real-time video
O instant messaging conferencing
T remote login 0 grid computing
3 P2P file sharing .
3 multi-user network O

games m
0 streaming stored video

clips

2: Application Layer 3

Application architectures

3 Client-server
7 Peer-to-peer (P2P)
3 Hybrid of client-server and P2P

2: Application Layer 4

Creating a network app

application

networ

write programs that

% run on (different) end
systems

< communicate over network

+ e.g., web server software
communicates with browser
software

No need to write software
for network-core devices

<+ Network-core devices do
not run user applications

<+ applications on end systems
allows for rapid app
development, propagation

d

ata link
hysical

2: Application Layer 5

Chapter 2: Application layer

0d 2.1 Client/ Server 0 2.6 P2P applications
network applications 0 2.7 Socket programming
0 2.2 Web and HTTP with TCP
0 2.3 FTP 0 2.8 Socket programming
7 2.4 Electronic Mail with UDP
= SMTP, POP3, IMAP 7 2.9 Building a Web
0 2.5 DNS server

2: Application Layer

6

Client-server architecture
(on different machines)

server.

<+ always-on waiting for a request
from client

permanent IP address
% provides some service

clients:
« interested in the server's service
«» communicate with server
+ may be intermittently connected
< may have dynamic IP addresses

<+ do not communicate directly with
each other

2: Application Layer 7

Client-Server Model

3 Typical scenario

+ The server process starts on some computer
system
- Initializes itself, then goes to sleep waiting for a client
request
+ A client process starts, either on the same
system or on some other system
» Sends a request to the server

* When the server process has finished providing its
service to the client and the server goes back to sleep,
waiting for the next client request to arrive

% The process repeats

2: Application Layer

8

Types of Servers

3 Two types of servers:

<+ Iterative servers

* When the server knows in advance how long it takes to
handle each request. There is a single copy of the
server which provides service in an iterative manner

< Concurrent servers

* Used when the service time is unpredictable and may be
large. The server creates a copy of itself to cater to a
client's request in a dedicated fashion. As many copies
of server as there are client requests.

2: Application Layer 9

Processes communicating

Process: program running Socket is an association
within a host. consisting of:
A within same host two - Protocol, local IP address,

local port number

- Protocol, remote IP
address, remote port

processes communicate
using inter-process

communication (defined number
by OS).

7 processes in different O Note: applications with
hosts communicate by P2P architectures have
exchanging messages client processes &
achieved by sockets server processes

2: Application Layer 10

Sockets (from connection)

0 process sends/receives
messages to/from its
socket socket analogous
to door

<+ sending process shoves
message out door

<+ sending process relies on
transport infrastructure
on other side of door which
brings message to socket
at receiving process

host or
server

controlled by

—
app developer

TCP with
buffers,
variables

A

Internet

controlled
by OS

host or
server

TCP with
buffers,
"| variables

3 APT: (1) choice of transport protocol; (2) ability to fix

a few parameters

2: Application Layer 11

What transport service does an app heed?

Data loss Throughput

7 some apps (e.g., audio) can I some apps (e.g.,
tolerate some loss multimedia) require

3 other apps (e.g., file minimum amount of
transfer, telnet) require throughput to be
100% reliable data “effective”
transfer

r 3 other apps (“elastic apps”)
Timing make use of whatever

7 some apps (e.g., throughput they get
Internet telephony,

intferactive games) Security .
require low delay to be O Encryption, data
“effective” integrity, ...

2: Application Layer 12

Transport service requirements of common apps

Application Dataloss Throughput Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

loss-tolerant

audio: 5kbps-1Mbps Yes, 100’s msec
video:10kbps-5Mbps

stored audio/video loss-tolerant same as above yes, few secs
interactive games |oss-tolerant few kbps up yes, 100’s msec
instant messaging no loss elastic yes and no

2: Application Layer 13

Internet transport protocols services

TCP service: UDP service:

O connection-oriented: setup O unreliable data transfer
required between client and between sending and
server processes receiving process

O reliable transport between 7 does not provide:
sending and receiving process connection setup,

reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

3 Fflow control/: sender won't
overwhelm receiver

O congestion control: throttle
sender when network
overloaded

O does not provide: timing,

minimum throughput
guarantees, security

Q: why bother? Why is
there a UDP?

2: Application Layer 14

Internet apps: application, transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia HTTP (eg Youtube), TCP or UDP
RTP [RFC 1889]
Internet telephony SIP, RTP, proprietary
(e.g., Skype) typically UDP

2: Application Layer

15

Using TCP or UDP

 Before start of communication, a
connection has to be established between
the two hosts

3 Five components in a connection
< Protocol used
<+ Source IP address
<+ Source port humber
<+ Destination IP address
+ Destination port number

2: Application Layer 16

Network Programming in Java

3 Network programs have to access external
data to accomplish their goals

0 Java provides a humber of ways for
accessing external data
+ Handled in a very uniform way

% An object from which we can read a sequence of
bytes is called an input stream

+ An object to which we can write a sequence of
bytes is called an output stream

2: Application Layer 17

3 Input and output streams are implemented
in Java as part of the abstract classes
InputStream and OutputStream

+ Concept of input stream can be used to
abstract almost any kind of input: keyboard,
file, network socket etc

<+ Similarly, an output stream can be the screen,
file, network socket etc
0 Java provides a large number of concrete
subclasses of InputStream and
OutputStream to handle a wide variety of
input-output options

2: Application Layer

18

Using DataInputStream

3 Many applications need to read in an entire
line of text at a time

% DataInputStream class and its readLine()
method can be used

+ The readLine() method reads in a line of ASCII
text and converts it into a Unicode string

DataInputStream inp = new DataInputStream (new
FileInputStream(“student.dat")):

String line = inp.readLine();

2: Application Layer 19

Network Programming Features

3 Java can be used easily to develop
network applications

+ It comes with a very powerful class library for
networking, as part of java.net package.

<+ It supports both the TCP and UDP protocol
families
0 A simple example is shown next

% (client) Connects to a specified host (server)
over a specified port, and prints whatever is
returned

2: Application Layer 20

Client Program

2: Application Layer 21

Notes

3 All networking code are enclosed in the try
.. catch block

3 Most of the network-related methods
throw IOException whenever some error
occurs

2: Application Layer 22

Implementing Server

3 This server:;

+ Sends a welcome message to the client after it
connects

+ Expects some data from the client and echos
the client data as long as client is sending the
data

2: Application Layer 23

Server Program

2: Application Layer 24

Some Points

7 Once the accept() call returns a Socket
object newsock, the getInputStream() and
getOutputStream() methods are used to get
an input stream and an output stream
respectively from that socket

3 Everything that the server program sends to
the output stream becomes the input of the
client program

3 Outputs of the client program become the
input stream of the server

2: Application Layer 25

How to Test Server?

3 Alternative 1

+ Write a client program to connect to the server
on the particular port

3 Alternative 2

<+ Use telnet command
- telnet 127.0.0.1 7500

2: Application Layer 26

Writing Concurrent Servers

3 What is a concurrent server?
<+ Can handle multiple client requests at the same
time
3 Java threads can be used

+ Every time a client establishes a connection
with the server, the accept() call will return

<+ At this time a new thread is created to handle
the client connection

% The main thread will go back and wait for the
hext connection

2: Application Layer 27

Disclaimer

Java Network Programming slides are adopted
from the Lecture Series on Internet
Technologies by Prof. I. Sengupta,
Department of Computer Science Engineering,
ITIT Kharagpur.

2: Application Layer 28

