
2: Application Layer 1

Chapter 2: Application layer

 2.1 Principles of
network applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P applications

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

2: Application Layer 2

Chapter 2: Application Layer

Our goals:

 conceptual,
implementation
aspects of network
application protocols

 client-server
paradigm

 peer-to-peer
paradigm

 transport-layer
service models

 programming network
applications

 socket API

 learn about protocols
by examining popular
application-level
protocols
 HTTP

 FTP

 SMTP / POP3 / IMAP

 DNS

2: Application Layer 3

Some network apps

 e-mail

 web

 instant messaging

 remote login

 P2P file sharing

 multi-user network
games

 streaming stored video
clips

 voice over IP

 real-time video
conferencing

 grid computing







2: Application Layer 4

Application architectures

 Client-server

 Peer-to-peer (P2P)

Hybrid of client-server and P2P

2: Application Layer 5

Creating a network app

write programs that
 run on (different) end

systems
 communicate over network

 e.g., web server software
communicates with browser
software

No need to write software
for network-core devices
 Network-core devices do

not run user applications

 applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2: Application Layer 6

Chapter 2: Application layer

 2.1 Client/ Server
network applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P applications

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

 2.9 Building a Web
server

2: Application Layer 7

Client-server architecture
(on different machines)

server:
 always-on waiting for a request

from client

 permanent IP address

 provides some service

clients:
 interested in the server’s service

 communicate with server

 may be intermittently connected

 may have dynamic IP addresses

 do not communicate directly with
each other

client/server

Client-Server Model

 Typical scenario
 The server process starts on some computer

system
• Initializes itself, then goes to sleep waiting for a client

request

 A client process starts, either on the same
system or on some other system

• Sends a request to the server

• When the server process has finished providing its
service to the client and the server goes back to sleep,
waiting for the next client request to arrive

 The process repeats

2: Application Layer 8

Types of Servers

 Two types of servers:
 Iterative servers

• When the server knows in advance how long it takes to
handle each request. There is a single copy of the
server which provides service in an iterative manner

 Concurrent servers
• Used when the service time is unpredictable and may be

large. The server creates a copy of itself to cater to a
client’s request in a dedicated fashion. As many copies
of server as there are client requests.

2: Application Layer 9

2: Application Layer 10

Processes communicating

Process: program running
within a host.

 within same host, two
processes communicate
using inter-process
communication (defined
by OS).

 processes in different
hosts communicate by
exchanging messages
achieved by sockets

Socket is an association
consisting of:
- Protocol, local IP address,

local port number

- Protocol, remote IP
address, remote port
number

 Note: applications with
P2P architectures have
client processes &
server processes

2: Application Layer 11

Sockets (from connection)

 process sends/receives
messages to/from its
socket socket analogous
to door
 sending process shoves

message out door

 sending process relies on
transport infrastructure
on other side of door which
brings message to socket
at receiving process

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled

by OS

controlled by

app developer

 API: (1) choice of transport protocol; (2) ability to fix
a few parameters

2: Application Layer 12

What transport service does an app need?

Data loss
 some apps (e.g., audio) can

tolerate some loss
 other apps (e.g., file

transfer, telnet) require
100% reliable data
transfer

Timing
 some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Throughput

 some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

 other apps (“elastic apps”)
make use of whatever
throughput they get

Security

 Encryption, data
integrity, …

2: Application Layer 13

Transport service requirements of common apps

Application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

instant messaging

Data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

Throughput

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

Time Sensitive

no

no

no

yes, 100’s msec

yes, few secs

yes, 100’s msec

yes and no

2: Application Layer 14

Internet transport protocols services

TCP service:
 connection-oriented: setup

required between client and
server processes

 reliable transport between
sending and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum throughput
guarantees, security

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is
there a UDP?

2: Application Layer 15

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

HTTP (eg Youtube),

RTP [RFC 1889]

SIP, RTP, proprietary

(e.g., Skype)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

typically UDP

Using TCP or UDP

 Before start of communication, a
connection has to be established between
the two hosts

 Five components in a connection
 Protocol used

 Source IP address

 Source port number

 Destination IP address

 Destination port number

2: Application Layer 16

Network Programming in Java

Network programs have to access external
data to accomplish their goals

 Java provides a number of ways for
accessing external data
 Handled in a very uniform way

 An object from which we can read a sequence of
bytes is called an input stream

 An object to which we can write a sequence of
bytes is called an output stream

2: Application Layer 17

 Input and output streams are implemented
in Java as part of the abstract classes
InputStream and OutputStream
 Concept of input stream can be used to

abstract almost any kind of input: keyboard,
file, network socket etc

 Similarly, an output stream can be the screen,
file, network socket etc

 Java provides a large number of concrete
subclasses of InputStream and
OutputStream to handle a wide variety of
input-output options

2: Application Layer 18

Using DataInputStream

Many applications need to read in an entire
line of text at a time
 DataInputStream class and its readLine()

method can be used

 The readLine() method reads in a line of ASCII
text and converts it into a Unicode string

DataInputStream inp = new DataInputStream (new
 FileInputStream(“student.dat”));

String line = inp.readLine();

2: Application Layer 19

Network Programming Features

 Java can be used easily to develop
network applications
 It comes with a very powerful class library for

networking, as part of java.net package.

 It supports both the TCP and UDP protocol
families

A simple example is shown next
 (client) Connects to a specified host (server)

over a specified port, and prints whatever is
returned

2: Application Layer 20

Client Program

2: Application Layer 21

Notes

All networking code are enclosed in the try
… catch block

Most of the network-related methods
throw IOException whenever some error
occurs

2: Application Layer 22

Implementing Server

 This server;
 Sends a welcome message to the client after it

connects

 Expects some data from the client and echos
the client data as long as client is sending the
data

2: Application Layer 23

Server Program

2: Application Layer 24

Some Points

Once the accept() call returns a Socket
object newsock, the getInputStream() and
getOutputStream() methods are used to get
an input stream and an output stream
respectively from that socket

 Everything that the server program sends to
the output stream becomes the input of the
client program

Outputs of the client program become the
input stream of the server

2: Application Layer 25

How to Test Server?

Alternative 1
 Write a client program to connect to the server

on the particular port

Alternative 2
 Use telnet command

• telnet 127.0.0.1 7500

2: Application Layer 26

Writing Concurrent Servers

What is a concurrent server?
 Can handle multiple client requests at the same

time

 Java threads can be used
 Every time a client establishes a connection

with the server, the accept() call will return

 At this time a new thread is created to handle
the client connection

 The main thread will go back and wait for the
next connection

2: Application Layer 27

Disclaimer

Java Network Programming slides are adopted
from the Lecture Series on Internet
Technologies by Prof. I. Sengupta,
Department of Computer Science Engineering,
IIT Kharagpur.

2: Application Layer 28

