CS410 Networks and Networking

Fall 2012

Beenish Chaudhry

1:00pm – 2:20pm, Tuesday & Friday

1: Introduction

Introductions

- Name
- Major
- Year
- Number of computer science courses taken previously?
- Comfort level with programming/ mathematics?
- Why taking this course?
- What do you hope to learn?
- How many courses you are taking this semester?
- Other extra curricular activities?
- Anything else you want to tell me

```
Course Objectives
```

- Course Objective: Have some fun, and learn about how modern networks work, with emphasis on the practical applications that most of you see and use every day.
- Not a study of the OSI model, or older technologies and protocols.
- Not a certification course for Network Specialists.
- Not a study of network hardware or data communications equipment

Preliminaries

- Instructor: Beenish Chaudhry
- Email: (bchaudhry@cs.earlham.edu)
- Required Text: <u>Computer Networking A Top-Down Approach</u> <u>Featuring the Internet</u>, 5th edition, Kurose-Ross (ISBN: 0-321-22735-2)
- Reference Texts: (interesting supplements, but not required): <u>Computer Networks</u>, 5th Edition, Tanenbaum (0-13-066102-3), and <u>Network Security Essentials – Applications and Standards</u>, 3rd Edition, Stallings (0-13-035128-8)

Web Site:

http://cs.earlham.edu/~bchaudhry/teaching/cs410.html

Schedule, Syllabus, Class Materials/Information, Home works

• Email - will be used for time-critical info

Schedule

- Ambitious... and may be modified... check web site frequently
- Attendance... <u>expected</u>, but not explicitly graded.
 - Attendance may be taken at any time.

Make-Up Policy

- □ Homework, Programs/Projects: 10%/day, <u>max of 40%</u>, then zero
- Quizzes and Exams: <u>NO</u> make-ups. <u>NO</u> early quizzes/exams, <u>Absence = zero</u> grade.

Grading Policy

- No. of Homework Assignments: 5-10
- Homework: 50%
- Midterm: 10%
- Quizzes: 15%
- Final: 25%

Final Grade Assignment (guideline only)

- Based on final numeric score out of 100% possible:
 - A 100-90
 - ▶ B 89-80
 - C 79-70
 - D 69-60
 - F 59 & below
- Probable final grade curve based on class performance

- Honesty... expected, dishonesty will not be tolerated
 - Discussions, brainstorming are encouraged, <u>HOWEVER</u>
 - Homework, Programming Assignments, Quizzes etc. are to be solely <u>YOUR individual work</u>
 - See the Earlham Academic Honesty Policy

Office Hours

- General Rule: Open office hours unless I have a note on my door
- Individual grades or questions on grading of individual quizzes, exams, etc. are discussed only during office hours (i.e. NOT at the end of the class period or over email)

Various Other "Stuff"

- Quizzes and exams will cover topics from classroom discussion, presentation slides (unless specifically eliminated, whether covered in class or not), and assigned reading.
- Policy for letters of recommendation/reference only after end of the semester (final grades assigned), and must rank in top 10 - 15% of class.

Disclaimer

- Material will be liberally taken from the textbook, Wikipedia, and other online sources
- Material for the slides is taken from slides that come with the textbook, Jim Rogers, Omprakash Gnawali, Mike O'Dell, and many others

What's this all about??

- What really happens when I.....?
- How does my email get from point a to point b?
- What do all these network "buzzwords" mean to me?
- Why does my browser respond slowly at times?
- How does an IP address actually find a web site?

Learning Approach: Top-Down

- Computer Networks and the Internet (Ch. I)
 - Overview of network components and the Internet
- The Application Layer (Ch. 2)
 - How you get work done in the network
- The Transport Layer (Ch. 3)
 - Why your data gets there
- The Network Layer & Routing (Ch. 4)
 - How your data finds its way
- The Data Link Layer & LANs (Ch. 5)
 - What ties the network pieces together
 - IEEE 802.11 Wireless LANs (Ch. 6)
 - Connectivity on the go
 - Network Security (Ch. 8)
 - Who's out there? Meet Bob, Alice & Trudy

Brief overviews

Chapter 1: Introduction

Our goal:

- get context, overview, and the general "feel" of networking
- Sets the stage for future topics, details *later* in course
- approach:
 - descriptive
 - use Internet as example and basis for learning

Roadmap:

- What is the Internet?
- What's a protocol?
- network edge
- network core
- access net, physical media
- performance: loss, delay
- protocol layers, service models

What's the Internet: a service view

- Infrastructure for providing services to distributed applications such as
 - Email, instant messaging, web surfing, remote login
- instructs one piece of software to deliver data to another piece of software on another end-system)
 - API: set of rules that sending piece of software must follow so that the internet can deliver the data to the destination software

What's the Internet: a nuts & bolts view

- millions of connected computing devices running network apps
- communication links
 - Types: fiber, copper, radio, satellite
 - transmission rate = bandwidth
- routers/switches: forward packets (chunks of data) between networks
- Examples of connected devices:
 - Desktops and Laptops
 - Servers
 - TV/ Refrigerator
 - Cellphones

What's the Internet: a nuts & bolts view

- protocols control sending, receiving of msgs
 - e.g., **TCP**, **IP**, HTTP, FTP, PPP
- Protocol design standards (RFC: Request for comments) developed by IETF: Internet Engineering Task Force

What's a protocol?

What's a protocol?

human protocols:

- "What time is it?"
- "I have a question"
- Introducing people to each other
- ... specific messages sent
 ... specific actions taken
 when messages received,
 or other events

network protocols:

- machines rather than humans
- all communication activity in the Internet is governed by protocols

protocols define format, order of messages sent and received among network entities, and actions taken on message transmission and/or receipt

A closer look at network structure

- network edge: applications and hosts
- access networks, physical media: communication links
- network core:
 - routers
 - network of networks

What is a network edge?

end systems (hosts): desktop, laptops, servers

- run application programs
- e.g.,WWW, email
- at "edge of network"

Types of Network Edge

- client/server model
 - client host requests, receives service from server
 - e.g., WWW client (browser)/Web server; email client/mail server
- peer-peer model:
- both parties send and receive data
- host interaction symmetric
- e.g.: internet telephony, groupware, file sharing

- Physical links that connect an end system to the first router (edge router) on the path to another end system
- Various Types
 - Residential access nets
 - institutional access networks (school, company, organization)
 - mobile access networks

Key considerations:

21

- bandwidth (bits per second) of access network?
- shared or dedicated?

Dial Up

- Residential Access
- User's software dials an ISP's phone number to make a connection
- Uses analog phone line for transmission
- Digital output -> analog output
- Disadvantages:
 - Very slow
 - Either phone or internet access

DSL

- Teleco is also ISP
- Splitter separates data and telephone signals on the user's side
- Telephone lines are used to exchange data and carry both data and telephone signals
- Digital Subscriber Line Access Multiplexer (DSLAM)
- Faster transmission (dedicated)
- Use phone and internet simultaneously
- Ideal for short distances

Cable

- Residential Access
- Makes use of cable television company's infrastructure
- Shared medium (several end systems are served)
- Faster than DSL according to some

<u>Ethernet</u>

- Access technology for LANs (corporate and university campuses)
- Users can have data for up to 100 Mbps

► <u>WIFI</u>

- <u>wireless LANs</u> (packets transmitted to access point connected to a wired Internet)
- wireless WAN (packets transmitted to a base station over the cellular phone infrastructure) 1: Introduction

WIFI

- <u>wireless LANs</u> (packets transmitted to access point connected to a wired Internet)
- <u>wireless WAN</u> (packets transmitted to a base station over the cellular phone infrastructure)
- Many homes combine broadband residential access with wireless LANs

WAN

- Teleco have invested in 3G wireless which provides packet switched WAN at speeds excess of IMbps
- Use cellular phone infrastructure
- Read <u>Fiber to the Home</u>

Physical Media

- physical link: transmit data bit from source to destination through many intermediaries
- guided media:
 - signals propagate in solid media: copper, fiber
- unguided media:
 - signals propagate in atmosphere and in outer space, such as wireless LAN or digital satellite channel

Twisted Pair (TP)

- two insulated copper wires
 - Traditional telephone lines
 - Wireless twisted together to reduce electrical interference
 - Used for LANs, residential access
 - Data rates: thickness, length

Physical Media: coax, fiber

Coaxial cable:

- Consists of two concentric copper conductors
- High bit rates (I Mbps)
- Cable internet coupled with cable television (carry two signals at the same time)
- Guided shared medium (number of end systems can be directly connected)

Fiber optic cable:

- glass fiber carrying light pulses
- high-speed operation
- low error rate (immune to electromagnetic interference)
- Limited use due to high cost

Physical media: radio

- signal carried in electromagnetic spectrum
- Advantages:
 - Penetrate walls
 - No physical wire
 - Connectivity to mobile user
 - Carry signals for a long distance
- Propagation environment:
 - Path loss and shadow fading
 - Decrease signal strength
 - Multipath fading
 - Interference

Terrestrial Radio Channels

- LAN (Span ten to a few hundred meters)
- ✓ WAN (e.g., cellular)

Satellite Radio Channels

 Geostationary or low earth orbiting satellites link two or more earth based microwave transmitter/receivers