CS310: ALGORITHMS AND

DATA STRUCTURES

Running Time Analysis

$$\Box T(n) = T(\frac{1}{2} n) + T(\frac{1}{2} n) + Kn$$

$$T(n) = 2 T(\frac{1}{2} n) + Kn$$

Recurrence Equation

How to solve recurrence equations?

Recursion Tree Method

Running Time Complexity of Merge Sort is $\Theta(n \log n)$

Deriving Running Time Expressions

- Assuming constant costs for various elementary steps
- Ignoring constant coefficients
- Drop lower order terms
- Obtain Asymptotic notation
- \Box Then we track the growth of T(n) as $n \longrightarrow \infty$
- Analysis applies regardless of the machine (all the platform dependent parameters have been removed)

Efficient Algorithms

An algorithm that is asymptotically most efficient (among multiple algorithms for the same problem) will run fastest for very large input sizes but NOT necessarily for small input sizes

Example: MergeSort versus Insertion Sort

Asymptotic Notations

There are many types of asymptotic notations

- O: the big-oh
- Ω: the big-omega
- o: the little-oh
- ω: the little-omega

 \square n >= 0, T(n) >= 0, n (domain) is continuous

Theta Notation: Formal Definition

- □ When we say T(n) is ⊖(f(n)), we mean that T(n) is sandwiched between two constant multiples of f(n) i.e. c₁f(n) <= T(n) <= c₂f(n) for c₁, c₂ > 0
- This claim applies when n is sufficiently large, i.e. some n >= n₀
- \square Example: $1/2n^2 + 3$