

Running Time Analysis

 T(n) = T(½ n) + T(½ n) + Kn

 T(n) = 2 T(½ n) + Kn

Recurrence Equation

How to solve recurrence equations?

Recursion Tree Method

Running Time Complexity of Merge Sort is Θ(n log n)

Deriving Running Time Expressions

 Assuming constant costs for various elementary steps

 Ignoring constant coefficients

 Drop lower order terms

 Obtain Asymptotic notation

 Then we track the growth of T(n) as n ∞

 Analysis applies regardless of the machine (all the

platform dependent parameters have been

removed)

Efficient Algorithms

 An algorithm that is asymptotically most efficient

(among multiple algorithms for the same problem)

will run fastest for very large input sizes but NOT

necessarily for small input sizes

 Example: MergeSort versus Insertion Sort

Asymptotic Notations

 There are many types of asymptotic notations

O: the big-oh

Ω: the big-omega

 o: the little-oh

ῳ: the little-omega

 n >= 0, T(n) >= 0, n (domain) is continuous

Theta Notation: Formal Definition

 When we say T(n) is Ɵ(f(n)), we mean that T(n) is

sandwiched between two constant multiples of f(n)

i.e. c1f(n) <= T(n) <= c2f(n) for c1, c2 > 0

 This claim applies when n is sufficiently large, i.e.

some n >= n0

 Example: 1/2n2
 + 3

