


Why / Why not Worst Case?

Worst case T(n) is useful because
provides a guarantee about running time performance
guarantee might be needed in some real time systems
Our goal will be to design algorithms with good
worst case performance but worse case input...
may not appear very frequently

performance on a typical input may be significantly
better than the performance on the worst case input

may also not be easy for a programmer to implement



Why / Why not Other Cases?

Average-case T(n) is
a good predictor of performance on a typical input
but it is harder to compute mathematically

Best-case T(n) is not useful, because

a slow algorithm (high worst and average case) can be made to
run very fast on some special inputs
Best case T(n) can be sometimes useful when

Worst Case T(n) of some algorithms might be less than Best Case
T(n) of another algorithm

If you have input close to the output (e.g. almost sorted), then
knowledge of best case T(n) helps



Example: Deciding Upon an Algorithm

Let A1, A2 be two algorithms for the same problem

A1 = very good worst-case performance, good avg case performance

A2 = very bad worst-case performance, very good avg case performance

Will you prefer A1 or A22

A1 may also be significantly more complex, harder

to implement



Problem — 1

Let A[1...n] be an array of distinct numbers. If i<j
and A[i] > A[j], then the pair (i, |) is called an
inversion of A

List all the inversions of <2,3,8,6,1>

What array from the set {1,2,...,n} has the most
inversions? How many does it have?

What is the relationship between the number of
inversions in the input array and insertion sort¢

What is the relationship between running time of
insertion sort and the number of inversions in an array?



Problem — 2

If all permutations are equally likely, what is the
expected number of inversions in a randomly
chosen permutation of 1,2,...n¢

n(n-1)/2
n(n-1)/4
n(n+1)/4

2nlog,n



