


Selection Sort

An iterative algorithm that sorts in place

Finds the smallest element in the collection and
places it in the beginning of the collection

After 1% iteration, A[1] is sorted

After 2"¢ iteration, A[1...2] is sorted
After 39 iteration, A[1...3] is sorted
After n-1" iteration, A[1...n-1] is sorted

After n-1™ iteration, the entire collection is sorted
too because the last element is the largest one left



Pseudo Code — Selection Sort
-

Foriin 1 to n-1
//find min A[i...n] and place it in A[lower]
tentMin = A[i]

newtentMin = tentMin

Forj=i+1ton
If A[j] < newtentMin
newtentMin = A[j]

tentMinIndex = j
End If

End For

If newtentMin = tentMin

swap(Ali], A[tentMinindex])
End If

End For



Quiz: Running Time Expression
—

Foriin 1 to n-1
//find min A[i...n] and place it in A[lower]
tentMin = A[i]

newtentMin = tentMin

Forj=i+1ton
If A[j] < newtentMin
newtentMin = A[j]

tentMinIndex = j
End If

End For

If newtentMin = tentMin

swap(Ali], A[tentMinindex])
End If

End For



Running Time of Selection Sort

Does not depend on the type of input

Still need to go through all the elements in the array to
determine whether the tentative min is the actual min

Worst-case T(n) = Average-case T(n) = Best-case T(n)

T(n) = Ky(n-1) + KyD oy n(n =i+ 1)
= K,(n-1) + K, (n(n+1)-1)/2
= o(n?



Correctness of Iterative Algorithm

Insertion & Selection Sort are iterative algorithms

Each iteration takes us closer and closer to the required
output (i.e. the data structure (array) in the sorted form)

This assertion about the data structure (array) is called
the loop invariant

It can be used to prove that the algorithm is correct



Formal Proof of Correctness

Induction Hypothesis: At the end of jth iteration, A[1...{] is sorted
Base Case: At the end of the first iteration, A[1] is sorted

Induction Step: At the beginning of the iteration, the assertion that
A[T1...i] is sorted is true, then by induction hypothesis at the end of
the (j+1)th iteration, A[1... j+1] is sorted. Because for loop works by
moving A[jl, A[j-1], Alj-2],A[j-3] and so on by one position to the left
until it finds the proper position for A[j+1]. This preserves the loop
invariant

Termination Step: the for loop terminates when j >n. Observing that
A[1...n] is the entire array, we conclude the array is sorted. Hence
algorithm is correct



Loop Invariants — Specific Descriptions

Insertion Sort: After ith iteration, A[1...i] is sorted

Selection Sort: After ith iteration, A[1...i] is sorted
with A[1] being the overall smallest element, A[2]
the second overall smallest element, etc, all of them
being in their final locations

To prove correctness, use pseudo code to prove that
these loop invariants apply through the life of the
algorithm — initialization, maintenance, termination



