

Selection Sort

 An iterative algorithm that sorts in place

 Finds the smallest element in the collection and
places it in the beginning of the collection

 After 1st iteration, A[1] is sorted

 After 2nd iteration, A[1…2] is sorted

 After 3rd iteration, A[1…3] is sorted

 After n-1th iteration, A[1…n-1] is sorted

 After n-1th iteration, the entire collection is sorted
too because the last element is the largest one left

Pseudo Code – Selection Sort

For i in 1 to n-1

 //find min A[i…n] and place it in A[lower]

 tentMin = A[i]

 newtentMin = tentMin

 For j = i+1 to n

 If A[j] < newtentMin

 newtentMin = A[j]

 tentMinIndex = j

End If

 End For

 If newtentMin != tentMin

 swap(A[i], A[tentMinIndex])

 End If

End For

Quiz: Running Time Expression

For i in 1 to n-1

 //find min A[i…n] and place it in A[lower]

 tentMin = A[i]

 newtentMin = tentMin

 For j = i+1 to n

 If A[j] < newtentMin

 newtentMin = A[j]

 tentMinIndex = j

End If

 End For

 If newtentMin != tentMin

 swap(A[i], A[tentMinIndex])

 End If

End For

Running Time of Selection Sort

 Does not depend on the type of input

 Still need to go through all the elements in the array to
determine whether the tentative min is the actual min

 Worst-case T(n) = Average-case T(n) = Best-case T(n)

 T(n) = K1(n-1) + K2∑j=2…n (n – j + 1)

 = K1(n-1) + K2 (n(n+1)-1)/2

 = Θ(n2)

Correctness of Iterative Algorithm

 Insertion & Selection Sort are iterative algorithms

 Each iteration takes us closer and closer to the required

output (i.e. the data structure (array) in the sorted form)

 This assertion about the data structure (array) is called

the loop invariant

 It can be used to prove that the algorithm is correct

Formal Proof of Correctness

 Induction Hypothesis: At the end of jth iteration, A[1…j] is sorted

 Base Case: At the end of the first iteration, A[1] is sorted

 Induction Step: At the beginning of the iteration, the assertion that
A[1…j] is sorted is true, then by induction hypothesis at the end of
the (j+1)th iteration, A[1… j+1] is sorted. Because for loop works by
moving A[j], A[j-1], A[j-2],A[j-3] and so on by one position to the left
until it finds the proper position for A[j+1]. This preserves the loop
invariant

 Termination Step: the for loop terminates when j >n. Observing that
A[1…n] is the entire array, we conclude the array is sorted. Hence
algorithm is correct

Loop Invariants – Specific Descriptions

 Insertion Sort: After ith iteration, A[1…i] is sorted

 Selection Sort: After ith iteration, A[1…i] is sorted
with A[1] being the overall smallest element, A[2]
the second overall smallest element, etc, all of them
being in their final locations

 To prove correctness, use pseudo code to prove that
these loop invariants apply through the life of the
algorithm – initialization, maintenance, termination

