

Selection Sort

 An iterative algorithm that sorts in place

 Finds the smallest element in the collection and
places it in the beginning of the collection

 After 1st iteration, A[1] is sorted

 After 2nd iteration, A[1…2] is sorted

 After 3rd iteration, A[1…3] is sorted

 After n-1th iteration, A[1…n-1] is sorted

 After n-1th iteration, the entire collection is sorted
too because the last element is the largest one left

Pseudo Code – Selection Sort

For i in 1 to n-1

 //find min A[i…n] and place it in A[lower]

 tentMin = A[i]

 newtentMin = tentMin

 For j = i+1 to n

 If A[j] < newtentMin

 newtentMin = A[j]

 tentMinIndex = j

End If

 End For

 If newtentMin != tentMin

 swap(A[i], A[tentMinIndex])

 End If

End For

Quiz: Running Time Expression

For i in 1 to n-1

 //find min A[i…n] and place it in A[lower]

 tentMin = A[i]

 newtentMin = tentMin

 For j = i+1 to n

 If A[j] < newtentMin

 newtentMin = A[j]

 tentMinIndex = j

End If

 End For

 If newtentMin != tentMin

 swap(A[i], A[tentMinIndex])

 End If

End For

Running Time of Selection Sort

 Does not depend on the type of input

 Still need to go through all the elements in the array to
determine whether the tentative min is the actual min

 Worst-case T(n) = Average-case T(n) = Best-case T(n)

 T(n) = K1(n-1) + K2∑j=2…n (n – j + 1)

 = K1(n-1) + K2 (n(n+1)-1)/2

 = Θ(n2)

Correctness of Iterative Algorithm

 Insertion & Selection Sort are iterative algorithms

 Each iteration takes us closer and closer to the required

output (i.e. the data structure (array) in the sorted form)

 This assertion about the data structure (array) is called

the loop invariant

 It can be used to prove that the algorithm is correct

Formal Proof of Correctness

 Induction Hypothesis: At the end of jth iteration, A[1…j] is sorted

 Base Case: At the end of the first iteration, A[1] is sorted

 Induction Step: At the beginning of the iteration, the assertion that
A[1…j] is sorted is true, then by induction hypothesis at the end of
the (j+1)th iteration, A[1… j+1] is sorted. Because for loop works by
moving A[j], A[j-1], A[j-2],A[j-3] and so on by one position to the left
until it finds the proper position for A[j+1]. This preserves the loop
invariant

 Termination Step: the for loop terminates when j >n. Observing that
A[1…n] is the entire array, we conclude the array is sorted. Hence
algorithm is correct

Loop Invariants – Specific Descriptions

 Insertion Sort: After ith iteration, A[1…i] is sorted

 Selection Sort: After ith iteration, A[1…i] is sorted
with A[1] being the overall smallest element, A[2]
the second overall smallest element, etc, all of them
being in their final locations

 To prove correctness, use pseudo code to prove that
these loop invariants apply through the life of the
algorithm – initialization, maintenance, termination

