


Selection Sort 

 An iterative algorithm that sorts in place 

 Finds the smallest element in the collection and 
places it in the beginning of the collection 

 After 1st iteration, A[1] is sorted 

 After 2nd iteration, A[1…2] is sorted 

 After 3rd iteration, A[1…3] is sorted 

 After n-1th iteration, A[1…n-1] is sorted 

 After n-1th iteration, the entire collection is sorted 
too because the last element is the largest one left 



Pseudo Code – Selection Sort 

For i in 1 to n-1    

     //find min A[i…n] and place it in A[lower] 

     tentMin = A[i] 

     newtentMin = tentMin 

      

     For j = i+1 to n 

     If A[j] < newtentMin 

 newtentMin = A[j] 

 tentMinIndex = j 

End If 

    End For 

   

    If newtentMin != tentMin 

         swap(A[i], A[tentMinIndex]) 

    End If 

End For 
 



Quiz: Running Time Expression 

For i in 1 to n-1    

     //find min A[i…n] and place it in A[lower] 

     tentMin = A[i] 

     newtentMin = tentMin 

      

     For j = i+1 to n 

     If A[j] < newtentMin 

 newtentMin = A[j] 

 tentMinIndex = j 

End If 

    End For 

   

    If newtentMin != tentMin 

         swap(A[i], A[tentMinIndex]) 

    End If 

End For 
 



Running Time of Selection Sort 

 Does not depend on the type of input 

 Still need to go through all the elements in the array to 
determine whether the tentative min is the actual min 

 

 Worst-case T(n) = Average-case T(n) = Best-case T(n) 

 

 T(n) = K1(n-1) + K2∑j=2…n (n – j + 1) 

          = K1(n-1) + K2 (n(n+1)-1)/2 

          = Θ(n2)  

 



Correctness of Iterative Algorithm 

 Insertion & Selection Sort are iterative algorithms 

 

 Each iteration takes us closer and closer to the required 

output (i.e. the data structure (array) in the sorted form) 

 

 This assertion about the data structure (array) is called 

the loop invariant  

 

 It can be used to prove that the algorithm is correct 

 

 

 



Formal Proof of Correctness 

 Induction Hypothesis: At the end of jth iteration, A[1…j] is sorted 

 

 Base Case: At the end of the first iteration, A[1] is sorted 

 

 Induction Step: At the beginning of the iteration, the assertion that 
A[1…j] is sorted is true, then by induction hypothesis at the end of 
the (j+1)th iteration, A[1… j+1] is sorted. Because for loop works by 
moving A[j], A[j-1], A[j-2],A[j-3] and so on by one position to the left 
until it finds the proper position for A[j+1]. This preserves the loop 
invariant 

 

 Termination Step: the for loop terminates when j >n. Observing that 
A[1…n] is the entire array, we conclude the array is sorted. Hence 
algorithm is correct 



Loop Invariants – Specific Descriptions 

 Insertion Sort: After ith iteration, A[1…i] is sorted 

 

 Selection Sort: After ith iteration, A[1…i] is sorted 
with A[1] being the overall smallest element, A[2] 
the second overall smallest element, etc, all of them 
being in their final locations 

 

 To prove correctness, use pseudo code to prove that 
these loop invariants apply through the life of the 
algorithm – initialization, maintenance, termination 


