


Selection Sort 

 An iterative algorithm that sorts in place 

 Finds the smallest element in the collection and 
places it in the beginning of the collection 

 After 1st iteration, A[1] is sorted 

 After 2nd iteration, A[1…2] is sorted 

 After 3rd iteration, A[1…3] is sorted 

 After n-1th iteration, A[1…n-1] is sorted 

 After n-1th iteration, the entire collection is sorted 
too because the last element is the largest one left 



Pseudo Code – Selection Sort 

For i in 1 to n-1    

     //find min A[i…n] and place it in A[lower] 

     tentMin = A[i] 

     newtentMin = tentMin 

      

     For j = i+1 to n 

     If A[j] < newtentMin 

 newtentMin = A[j] 

 tentMinIndex = j 

End If 

    End For 

   

    If newtentMin != tentMin 

         swap(A[i], A[tentMinIndex]) 

    End If 

End For 
 



Quiz: Running Time Expression 

For i in 1 to n-1    

     //find min A[i…n] and place it in A[lower] 

     tentMin = A[i] 

     newtentMin = tentMin 

      

     For j = i+1 to n 

     If A[j] < newtentMin 

 newtentMin = A[j] 

 tentMinIndex = j 

End If 

    End For 

   

    If newtentMin != tentMin 

         swap(A[i], A[tentMinIndex]) 

    End If 

End For 
 



Running Time of Selection Sort 

 Does not depend on the type of input 

 Still need to go through all the elements in the array to 
determine whether the tentative min is the actual min 

 

 Worst-case T(n) = Average-case T(n) = Best-case T(n) 

 

 T(n) = K1(n-1) + K2∑j=2…n (n – j + 1) 

          = K1(n-1) + K2 (n(n+1)-1)/2 

          = Θ(n2)  

 



Correctness of Iterative Algorithm 

 Insertion & Selection Sort are iterative algorithms 

 

 Each iteration takes us closer and closer to the required 

output (i.e. the data structure (array) in the sorted form) 

 

 This assertion about the data structure (array) is called 

the loop invariant  

 

 It can be used to prove that the algorithm is correct 

 

 

 



Formal Proof of Correctness 

 Induction Hypothesis: At the end of jth iteration, A[1…j] is sorted 

 

 Base Case: At the end of the first iteration, A[1] is sorted 

 

 Induction Step: At the beginning of the iteration, the assertion that 
A[1…j] is sorted is true, then by induction hypothesis at the end of 
the (j+1)th iteration, A[1… j+1] is sorted. Because for loop works by 
moving A[j], A[j-1], A[j-2],A[j-3] and so on by one position to the left 
until it finds the proper position for A[j+1]. This preserves the loop 
invariant 

 

 Termination Step: the for loop terminates when j >n. Observing that 
A[1…n] is the entire array, we conclude the array is sorted. Hence 
algorithm is correct 



Loop Invariants – Specific Descriptions 

 Insertion Sort: After ith iteration, A[1…i] is sorted 

 

 Selection Sort: After ith iteration, A[1…i] is sorted 
with A[1] being the overall smallest element, A[2] 
the second overall smallest element, etc, all of them 
being in their final locations 

 

 To prove correctness, use pseudo code to prove that 
these loop invariants apply through the life of the 
algorithm – initialization, maintenance, termination 


