CS310: ALGORITHMS AND

DATA STRUCTURES

Homework

□ Questions?

Computational Time of Insertion Sort

□ In general:
$$K_1(n-1) + K_2 \sum_{j=2...n} (j-1)$$

Three notions of computational time
 Worst case: Maximum time on any input of size n
 Average case: Expected time over all inputs of size n
 Best case: Minimum time on any input of size n

Computational time equation for each case?

Computational Time Equations

- □ Worst Case: $K_1(n-1) + K_2 \sum_{j=2...n} (j-1)$
- □ Average Case: K₁(n-1) + K₂∑_{j=2...n} (j − 1)/2
 □ Best Case: K₁(n-1)

□ Not worry about the value of the constants but only about the most dominant term as n -> ∞

Simplifying Computational Time

- Constants: machine dependent
- □ We will be concerned about values of running times only for large inputs, i.e. n -> ∞
- As such large values of n, one of the terms in the expression for the running time will usually dominate over other (lower-order) terms, so we will ignore the other terms

Asymptotic Notation

□ We will thus use a machine-independent notation to express the running time of an algorithm as n -> ∞

This is the asymptotic notation

Worst Case:
$$K_1(n-1) + K_2 n(n-1)/2$$
 $\Theta(n^2)$
Average Case: $K_1(n-1) + K_2 n(n-1)/4$ $\Theta(n^2)$
Best Case: $K_1(n-1)$ $\Theta(n)$

Why Asymptotic Notation?

□ As n -> ∞, a Θ(n²) algorithm will beat a Θ(n³) algorithm

From now on, not worry about constructing the actual computational time equation but only look at its asymptotic notation

Selection Sort

- □ An iterative algorithm that sorts in place
- Find the smallest element in the collection and place it in the beginning of the collection
- At each iteration, has a sorted and an unsorted part
- □ After n-1 iteration, the collection is sorted