

Sorting Problem

 Given a randomly ordered sequence

 Input: <a1, a2, …, an>

 Sort them into non-decreasing order

 Output: <a1’, a2’, …, an’>

 Э a1’≤ a2’ ≤ a3’ … ≤ an’

 (Duplicates are allowed)

 There exist a number of sorting algorithms with varying
complexities involving different kinds of data structures
like arrays, heaps

Insertion Sort

 A sorting method used by card players

 At each step, an element is taken from the unordered

sequence and inserted into the ordered sequence

 Build the sorted sequence (in place) one element at a

time

Pseudo Code

 A programming language with English

 Does not use braces but uses indentation

 Permitted Keywords:

 Do While … EndDo; Do Until … EndDo; If … EndIf;

 Case … EndCase; When; Return …; Return; For … End For

 Other Words:

 Set; Reset; Increment; Compute; Calculate; Add; Sum;
Multiple; Print; Display; Input; Output; Edit; Test

Insertion Sort Cont…

 Since our ordered sequence is maintained as an array,
inserting a new element into it requires us to “make
space” for it

To insert jth item

 start from O[j-1] and scan left

 while O[index] > x

 shift the element to the right

 index –

 O[index+1] = x

Insertion Sort Cont…

For j = 2 to n

 // insert the jth element

 key = A[j]

 i = j – 1

 // Insert A[j] into the sorted sequence A[1‥ j-1]

 Do While i > 0 and A[i] > key

 A[i + 1] = A[i]

 i = i – 1

 End Do

 A[i + 1] = key

End For

Computational Time of Insertion Sort

 In general: K1(n-1) + K2 n(n-1)

 Three notions of computational time

 Worst case: Maximum time on any input of size n

 Average case: Expected time over all inputs of size n

 Best case: Minimum time on any input of size n

 Computational time equation for each case?

Big Idea … Next Time

 Not worry about the value of the constant but only look

at the most dominant term in the computational time

equation.

