


Sorting Problem

Given a randomly ordered sequence
Input: <al, a2, ..., an>

Sort them into non-decreasing order
Output: <al’, a2’, ..., an’>
Qal'’Ka2’< a3 ... < an’
(Duplicates are allowed)

There exist a number of sorting algorithms with varying

complexities involving different kinds of data structures
like arrays, heaps



Insertion Sort

A sorting method used by card players

R b 1F 572
‘5‘% VN
‘2';1"* '#; R
S e
:.?‘,. ﬁ.‘n ’F
e
b
¥y .f.

At each step, an element is taken from the unordered
sequence and inserted into the ordered sequence

Build the sorted sequence (in place) one element at a
time



Pseudo Code

A programming language with English
Does not use braces but uses indentation

Permitted Keywords:

Do While ... EndDo; Do Until ... EndDo; If ... Endlf;
Case ... EndCase; When; Return ...; Return; For ... End For

Other Words:

Set; Reset; Increment; Compute; Calculate; Add; Sum;
Multiple; Print; Display; Input; Output; Edit; Test



Insertion Sort Cont...

Since our ordered sequence is maintained as an array,
inserting a new element into it requires us to “make
space” for it

To insert jth item
start from OJj-1] and scan left
while Of[index] > x
shift the element to the right

index —
Olfindex+1] = x



Insertion Sort Cont...
B

Fori=2ton
// insert the jth element
key = Al[j]

i=j-1

// Insert A[j] into the sorted sequence A[1" " j-1]
Do While i > 0 and AJi] > key

Ali + 1] = A[i]

i=i—1

End Do

Ali + 1] = key
End For



Computational Time of Insertion Sort

In general: K;(n-1) + K, n(n-1)

Three notions of computational time
Worst case: Maximum time on any input of size n
Average case: Expected time over all inputs of size n

Best case: Minimum time on any input of size n

Computational time equation for each case?



Big Idea ... Next Time

Not worry about the value of the constant but only look
at the most dominant term in the computational time
equation.



