

Sorting Problem

 Given a randomly ordered sequence

 Input: <a1, a2, …, an>

 Sort them into non-decreasing order

 Output: <a1’, a2’, …, an’>

 Э a1’≤ a2’ ≤ a3’ … ≤ an’

 (Duplicates are allowed)

 There exist a number of sorting algorithms with varying
complexities involving different kinds of data structures
like arrays, heaps

Insertion Sort

 A sorting method used by card players

 At each step, an element is taken from the unordered

sequence and inserted into the ordered sequence

 Build the sorted sequence (in place) one element at a

time

Pseudo Code

 A programming language with English

 Does not use braces but uses indentation

 Permitted Keywords:

 Do While … EndDo; Do Until … EndDo; If … EndIf;

 Case … EndCase; When; Return …; Return; For … End For

 Other Words:

 Set; Reset; Increment; Compute; Calculate; Add; Sum;
Multiple; Print; Display; Input; Output; Edit; Test

Insertion Sort Cont…

 Since our ordered sequence is maintained as an array,
inserting a new element into it requires us to “make
space” for it

To insert jth item

 start from O[j-1] and scan left

 while O[index] > x

 shift the element to the right

 index –

 O[index+1] = x

Insertion Sort Cont…

For j = 2 to n

 // insert the jth element

 key = A[j]

 i = j – 1

 // Insert A[j] into the sorted sequence A[1‥ j-1]

 Do While i > 0 and A[i] > key

 A[i + 1] = A[i]

 i = i – 1

 End Do

 A[i + 1] = key

End For

Computational Time of Insertion Sort

 In general: K1(n-1) + K2 n(n-1)

 Three notions of computational time

 Worst case: Maximum time on any input of size n

 Average case: Expected time over all inputs of size n

 Best case: Minimum time on any input of size n

 Computational time equation for each case?

Big Idea … Next Time

 Not worry about the value of the constant but only look

at the most dominant term in the computational time

equation.

