


Searching Problem

Input: A sequence of n numbers: a,, a,, a;, ...,
a, and a valve v

Output: If v is present in the sequence, provide
its location. Else say it is not present



Linear Search

All...n]

for| =1 ton

if A[i] == v then return index end if

end for

return not found



Computational Analysis

Best case analysis is bogus
Average case analysis is complex

What is going to happen in worst case?

©(n) which means

O(n) and Q(n)



Can we do better than linear search?
I

0 Yes, if the input sequence is sorted

1 Enables us to do efficient searching — binary search



Binary Search — Pseudo Code

lower = 1; upper = n
while (lower <= upper)
middle = floor((lower + upper)/2)
if v == A[middle]
return middle
else if v < A[middle]
upper = middle — 1
else if v > A[middle]
lower = middle + 1
end while



Binary Search — Pseudo Code

binary_search(A, v, lower, upper)
middle = floor((lower + upper)/2)
if v== Almiddle]
return middle
else if v < A[middle]
binary_search(A, v, lower, middle — 1)
else
binary_search(A, v, middle + 1, upper)



Quiz

Show all values of lower, upper and middle indices
when binary search used to search for @ in the
given array. It is your responsibility to make the
array suitable for the binary search algorithm

{1,4,7,8,3,6,5,2}

Assume middle is the floor of the average of upper
and lower indices.

What do you think the run time equation of binary
search would look like?



Binary Search — Analysis

S s
O T(n)=T(n/2) + ¢



Divide and Conquer

Divide The overall problem into sub problems

(A sub problem is a smaller instance of the same type
of problem)

Conquer Recursively solve the sub problems

(When the sub problems get small enough, solve them
directly)

Combine The answers to the sub problems



Run Time of DIVIDE-CONQUER

If DIVIDE step divides a problem in a sub problems,
each sub problem may be of size n/b

The COMBINE step may take f(n) time

T(n) = a T(n/b) + f(n)
Values of a, b and f(n):

for merge sort?

for binary search?



