CS310: ALGORITHMS AND

DATA STRUCTURES

Transitivity of Asymptotic Notations

- □ If $T(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$,
- Does this imply that $T(n) = \Theta(h(n))$?
- If T(n) = O(g(n)) and g(n) = O(h(n)),
 Does this imply that T(n) = O(h(n))?

What about other asymptotic notations?

Reflexivity

T(n) = Θ(T(n))?
 T(n) = Ο(T(n))?
 T(n) = Ω(T(n))?

Symmetry

$$\Box T(n) = \Theta(f(n)) = f(n) = \Theta(T(n))?$$

$$\Box T(n) = \Omega(f(n)) = f(n) = \Omega(T(n))?$$

□
$$T(n) = O(f(n)) => f(n) = O(T(n))$$
?

 \Box What about o and ψ ?

Other Properties

□ If f(n) = O(g(n)), then $g(n) = \Omega(f(n))$ and vice versa □ If f(n) = o(g(n)), then $g(n) = \omega(f(n))$ and vice versa

- What properties are satisfied by the following asymptotic notations?
 - Ο Θ:
 - Ω:
 - **O**:
 - □ψ:
 - **O**:

Parallels between Asymptotic Notations and Arithmetic Operators

- $\Box T(n) = \Theta(f(n)) \Leftrightarrow t = f$
- $\Box T(n) = \Omega(f(n)) \Leftrightarrow t \ge f$
- $\Box T(n) = O(f(n)) \Leftrightarrow t \leq f$
- $\Box T(n) = \psi(f(n)) \Leftrightarrow t > f$
- $\Box T(n) = o(f(n)) \Leftrightarrow t < f$