CS310: ALGORITHMS AND

DATA STRUCTURES

Theta Notation: Formal Definition

- □ When we say T(n) is $\Theta(f(n))$, we mean that T(n) is sandwiched between two constant multiples of f(n) i.e. $c_1 f(n) \le T(n) \le c_2 f(n)$ for $c_1, c_2 > 0$
- □ This claim applies when n is sufficiently large, i.e. some $n \ge n_0$

Theta Notation Cont ...

- □ Even though we write $T(n) = \Theta(f(n))$, as in $T(n) = \Theta(n^2)$, $\Theta(f(n))$ is actually a set of functions
- \Box $\Theta(f(n))$ represents a set of all functions having the same rate of growth as f(n), so
- □ $\Theta(f(n)) = \{T(n): \text{ there exist positive constants } c_1, c_2 \text{ such that } c_1f(n) \le T(n) \le c_2f(n) \text{ for all } n \ge n_0 \text{ where } n_0 \text{ is some threshold value}\}$
- \Box $\Theta(n^2) = \{n^2, n^2 1, \frac{1}{5}n^2, \frac{1}{5}n^2 + 3n, an^2 + n \log n ...\}$

Theta Notation Cont ...

□ Thus saying that $T(n) = \Theta(n^2)$ really means that the function $T(n) = \frac{1}{2}n^2 - 3n \in \Theta(n^2)$ where

 $\Theta(n^2)$ = set of all those f(n) such that there exist positive constants c_1 , c_2 for which $c_1 f(n) \le T(n) \le c_2 f(n)$ for all $n \ge n_0$ where n_0 is some threshold value

Asymptotic Notations

- \square We have already seen Theta (Θ) notation
- There are other asymptotic notations
 - O: the big-oh
 - $\square \Omega$: the big-omega
 - o: the little-oh
 - $\square \, \omega$: the little-omega

 \square n >= 0, T(n) >= 0, n (domain) is continuous

Big Oh: Formal Definition

- □ When we say T(n) is O(f(n)), it means that T(n) is always less than or bounded from above by some multiple of f(n) i.e. $T(n) \le c_1 f(n)$ for $c_1 > 0$
- □ This claim applies when n is sufficiently large, i.e. some $n \ge n_0$
- □ Note: if $T(n) = \Theta(f(n))$ then T(n) = O(f(n))
- □ But : $T(n) = O(f(n)) = /=> T(n) = \Theta(f(n))$, why?

Example

- □ $an^2+bn+c = O(n^2)$, then there should exist a constant $c_2>0$, such that for large n, $an^2+bn+c <= c_2n^2$
- O(f(n) is the set of all functions with the same or smaller order of growth than f(n)
- \Box O(n²) = {n², 100n + 5, log n, ...}
- □ Why n^3 or n^4 do not belong to $O(n^2)$?

Big Omega: Formal Definition

- □ When we say T(n) is $\Omega(f(n))$, it means that T(n) is bounded from below by some multiple of f(n) i.e. $c_1f(n) \le T(n)$ for $c_1 > 0$
- □ This claim applies when n is sufficiently large, i.e. some $n \ge n_0$
- $T(n) = \Theta(f(n)) => T(n) = \Omega(f(n))$ but not the converse

Example

- □ an²+bn+c = $\Omega(n^2)$, then there should exist a constant c₂>0, such that for large n, an²+bn+c>= c₂n²
- $c_2 = a/2$

- \square $\Omega(n^2)$ is the set of all functions with a larger or the same order of growth as f(n)
- □ Why 6n+100 is not $\Omega(n^2)$?