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1 Abstract

Two brief arguments are made for why handwriting recognition is important. Existing approaches and my
approach are summarized along with the stated goals of my project. The full handwriting recognition pipeline
of scanning, segmenting, and recognition is examined and described thoroughly in order. Feed forward Artificial
Neural Networks are explained on a low level along with their weaknesses and how to go about character
recognition with one. The outcome of the project is summarized, two of the three project goals are marked
as incomplete. Speculation on future work on the project is given should the project’s problems get fixed.

2 Introduction

For sixty years handwriting and computers have coexisted, yet a machine’s ability for recognizing human
handwriting is still imperfect. Fluidly free writing notes and ideas on paper will never be phased out by digital
input methods. Even so handwriting may drastically change its style over time. The handwriting on the original
United States Constitution for example cannot be so fluently read today. So what will handwriting look like in
another 225 years? It may be so different that we will need methods for recognizing and reading handwriting of yore.
With the advent of mobile devices, equipped with cameras many times more accurate and higher resolution
they had ten or even five years ago, the ability to scan text with a camera for later is a commonplace. If an
image is of written notes it would be impossible to search for it, and transcribing notes from images can be
arduous, why not let a machine do it for you? It is for these reasons above that the problems in handwriting
recognition are opportunities to be improved upon.

2.1 Other Approaches

There is high commercial potential for handwriting recognition applications, thus a relatively little amount
of literature has been published on it and even fewer open source software options are available. Typically
handwriting recognition works as a pipeline, segmenting lines, words, characters and then trying to recognize
the result word by word or letter by letter. Either approach involves analyzing the extracted characters or words
through a recognition model such as a Hidden Markov model or an Artificial Neural Network (ANN) both of
which need to have extensive training with a text samples before hand. In the case of analyzing a document
word by word (as opposed to letter by letter) a lexicon and language model is also needed. [3]

2.2 My Approach

Segmenting text features is a relatively trivial step provided the text is level and the scan is of an acceptable
quality. Character recognition will involve extracting a character’s attributes as input to be recognized in an
Artificial Neural Network. Provided the ANN is trained well, this method of recognition would allow a broad
set of varying characters to be recognized. The ANN could also be trained on typed characters or any arbitrary
linear script so the application itself is not necessarily limited to handwriting or even English. However the
initial focus will be recognizing basic ASCII characters.

2.3 My Project

There are three initial goals of the project.

1. Accurately recognize visible ACSII characters in images of handwriting that are less than one megapixel.
While higher resolution mobile and point and shoot cameras are becoming more available, the ability to
process and recognize handwriting elements in low resolution images will not restrict those who only have
basic camera access from using the software.
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Figure 1: The recognition pipeline, segmentation steps have been grouped together. Slanted boxes signify some
input or output.

2. The software is trained to recognize general handwriting, not specifically mine or someone else’s. This simply
requires a wide variety of readily available handwriting images to train the software on. Rather than writing
out pages and scanning them, or searching for handwriting training sets; a combination of actual handwriting
scans and images with computer text using handwriting fonts will be generated for the software to train
with. (Unachieved)

3. Compiled source can run on multiple platforms provided the libraries are on that platform. Primarily to
serve this goal, OpenCV was chosen as the supporting image processing library. The library also gave support
for types of machine learning, one of those being an ANN type. The library is supported on every major
desktop operating system such as Linux, Mac OS, and Microsoft Windows. Furthermore Google Android
and Apple iOS, the two major mobile operating systems, are also supported. [2]

3 Offline Handwriting Recognition

There are two fundamental types of handwriting recognition, online and offline. Online recognition deals with
text that has been input to a machine through a digitizer. Offline deals with writing that is on a physical sheet
of paper and scanned into a computer for analysis. Here we are dealing with the latter. There are several discrete
and ordered steps that go into recognizing offline handwriting: scanning, segmentation and recognition. These
steps are visibly laid out in figure 1 with the sub steps of the segmentation process outlined as well.

3.1 Text Scanning

There are three steps here, preparing the image for processing, finding the text on the page, and if necessary
normalizing it. It’s easiest for the software to recognize higher contrast areas, a image threshold operation makes
this easier by turning the entire image into just black and white pixels. The most basic threshold operation
by OpenCV scans through an image’s pixels and applies the operation:

dst(x, y) =

{
maxvalue if src(x, y) > thresholdvalue
0 otherwise

[1] Where maxvalue is usually 255 for white. Determining the threshold value can be a little more chal-
lenging. Manually I’ve found that threshold values of 110 ± 10 work well. However we cannot manually adjust
every image every time, adaptive thresholds solve this problem. By taking a mean of the area around the pixel as
thresholdvalue above and then comparing the pixel’s value (src(x, y)), a more optimal threshold value can be
determined. However if the area to get the threshold value is not large enough, the image as a result of an adaptive
threshold can be loaded with features we don’t want brought out rendering it useless for feature extraction. [1]
Unlike printed text, it’s easy for a writer to accidentally start writing at an angle. If the scan of the paper is
crooked or the text area is not level, the whole text areas and the text lines can be normalized or made straight
without too much processing with a linear rotation transformation. [10]
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3.2 Feature Segmentation

3.2.1 Line Segmentation

For segmenting handwritten lines a good approach is to assume that the writer is following imaginary baselines.
These baselines can be found with a clustering technique which given lines can find a left most point where
the lines start and the straight direction they continue in. [9] A more simple approach is to scan the text from
top to bottom and segment on lines where there is no ink or features.

3.2.2 Word Segmentation

Components of the line can are then extracted word by word. The approach is very similar to line segmentation
however instead of scanning for gaps top to bottom, we scan side to side. Larger gaps can easily be distinguished as
spaces. At this point there are two paths an application can go down once a word has been segmented. The holistic
approach recognizes the word without looking at the characters closely. This approach uses a lexicon of possible
words and can use a template based or shape recognition approach in matching the image of the word, to the actual
word. However the use of a lexicon recognition system can be limiting because not every word may be entered. The
analytic approach recognizes and extracts the characters from the word and tries to output the exact word letter
by letter. [4] Higher accuracy in recognizing words can be accomplished by combining the holistic and analytical ap-
proaches. [9] For the rest of this paper we’re only going to look at the analytical approach due to its dynamic nature.

3.2.3 Character Segmentation

For each word image extracted, there is a variety of ways to recognize which textual characters it contains.
Additional difficulty can come from mixed text of upper and lowercase letters. [9] The algorithms that go behind
word segmentation, by weighing space between components, can be applied here assuming letters are reasonably
spaced in a word. [9] Issues arise when letters or components in a word are connected. It’s connected letters
that make character segmentation less trivial than line or word segmentation. One method for segmenting
numbers in zip codes works by looking at successive high and low points and assuming that these belong to
new letters. Cursive characters can also be searched for a letter’s landmarks, ascending or descending strokes.
These landmarks are compared to a pool of stroke templates which are known to be characteristics of certain
letters, thus a separation of characters can be found by looking which landmarks occur on the left or right side
of the character. However this does not work well for every character like n’ and m’ which have no landmarks. [4]

4 Character Recognition

Each character segmented has some real letter it represents, it’s now the machine’s job to figure out what it
is. To do this we need some sort of recognition model. The two primary models used to recognize a character
are Hidden Markov models and Artificial Neural Networks. Hidden Markov models are a statistical model that
makes predictions based on a set of observations and states. [3] In the domain of optical character recognition, its
applications are more useful in recognizing uniform characters. In comparison ANNs are a more flexible model,
made up of layers of neurons with adjustable weights linking them together. These weights effect the overall
output of the network and are adjusted through training. Provided input is uniform enough and the training
set is large enough, an ANN can be trained to recognize a character that varies shape. Due to their flexible
nature I have chosen to recognize characters with an ANN.

4.1 Artificial Neural Networks

The earliest Artificial Neural Network models were studied in the early 1940s and presented as models of
biological neural networks. It wasn’t until the notion of error correction and back propagation algorithms
that the ANN became prevalent in computing primarily for its learning capability. There are a few dif-
ferent types of ANNs, we’ll be looking at the most used and basic type: a feed forward ANN. A single
layer feed forward ANN consists input neurons, hidden neurons, and output neurons each in their own layer.
Each hidden layer neuron has an activation function and returns some function which takes parameters
from input neurons. On the connections between neurons there are weights which alter the input in some
way. Suppose the function for y in 2 is w1x1 + w2x2. and the activation function for y is a piecewise func-
tion

f(s) =

{
1 if s is even
− 1 otherwise
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Figure 2: A single layer artificial neural network with a single neuron in the hidden layer.

Figure 3: A multi layer Artificial Neural Network with two hidden layers, four neurons each.

The output of this network will either be a 1 or -1.
However depending on the weights between the input and output (w1 and w2), the NN can output a wrong
answer. To correct this we can train it. The most basic way to train a NN is with the perceptron learning rule. [6]

1. Suppose that the weights are at first random. Input and output nodes are as in (figure 1)
2. Given some training value z.
3. If y 6= f(z), modify the weights by ∆wi = f(z)xi.
4. Go to 2.

After some amount of training the NN’s weights will be adjusted such that the output of the NN is almost
always correct, that is it has converged with the correct solution.

4.1.1 Multi-Layer Artificial Neural Networks and Back Propagation

Described above is a single layer Artificial Neural Network. More complex calculations, such as analyzing the
shape of a letter and determining what letter it is, can be performed by adding another layer of neurons to
the hidden layer. The Artificial Neural Network is now a multi-layer Artificial Neural Network (figure 3). With
a new topology, we can no longer use the perceptron learning rule to update weights, instead we use a method
called back propagation which works similarly to it. Connections between two neurons j and k in the hidden
layer have weights too and is annotated as wjk.

1. Initialize all weights random.
2. Given some training values z for output nodes y.
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3. If y 6= z, update each of the weights for the output and hidden layers in the network so that ∆wij = γδkyj.

[6]This is called the generalized delta rule, δ is an error rate from the training value and γ a learning rate. The
error rate changes each time depending on the layer where the weights are being changed. The whole network
gets affected this way, and weights are not changed as drastically as they are in a perceptron learning model
because there is some gradient descent for the error as the goes back through the network. [8]

4.1.2 Deficiencies of Artificial Neural Networks

There is a fine balance in using ANNs. If there is too much training of the network, the NN will only give
accurate output for values similar to the training values, this is aptly called overtraining or overfitting. In a
handwriting recognition context, if I were to train a NN on my handwriting alone, it would only be able to
accurately recognize my handwriting. We prevent overtraining by finding out an optimal training set size by
incrementing now many training sets there are and then running a validation set on the NN, the lower the error
on the validation set the more precise we can be finding n. [8] If input or output values are too large, network
paralysis can occur due to the weights being too large for back propagation to have a proper effect. [6] A careful
design of the network’s input neurons and output neurons can aid against this.

4.2 Using Artificial Neural Networks to Recognize Characters

Recognizing a character is most dependent on the quality of the scanning and segmentation steps. If character
segmentation incorrectly slices a character in half, and if the network is trained with that value, it will not be able
to recognize full versions of that character or it might incorrectly categorize other characters. Even with good
segmentation the input for an ANN must be something we can quantify about a character. Likewise its output
must be something we can get a character from. There is a wide variety of data we use to analyze an individual
character from as simple as ratio of pixels on the top half to the bottom half, to analyzing histograms of the image
and contour analysis of the binary image. [11] The more information you can get about a character the better, and
more input neurons you’ll have. Remember not to have too many input values across a wide range or else network
paralysis can occur. The same goes for output values, an expected large output value from a bunch of small
inputs can easily lead to a case of paralysis because the input values will not change as proportional to the output.

5 Results and Discussion

Of the three goals set in section 2.3, one could truly be considered complete.

Accurately Recognize ASCII Characters from low resolution images The most work in the project
was put into figuring out reliable segmentation methods instead of recognition. Segmentation is reliable enough
such that characters are successfully segmented given samples of legible handwriting. While Spaces and new lines
are recognized, accurate character recognition across a wide range of image resolutions was not accomplished.

General recognition with a general training set The ANN was trained with set of about 250 characters.
However recognition of input characters was not successful. I believe this stems from how the ANN was designed
in the first place. Five input neurons take the width to height ratio of a character and black pixel counts from the
top, bottom, left, and right halves of a character. One output neuron gives an ASCII character code. I think the
input is not descriptive enough for a single character and the expected output is too wide a range given the input.

Portable binary The use of the OpenCV library was a success. Should the software want to be ported to
a mobile device, some small changes in the code. Changes in the language and implementation of GUI views
to start would have to be made, however the calls to OpenCV would stay more or less the same.

5.1 Further Work

Should the software get to a proper working state, possible additions include recognition of multiple character
sets and non-linear scripts. Recognizing a character in ASCII is no different from recognizing it in UNICODE,
the difference being there is much much more searching involved in UNICODE recognition given its size and
the amount of characters that have been implemented. Recognizing non-linear scripts or writing styles that
aren’t based on discrete 26 characters like English will be a challenge to undertake, Korean Hangul and Egyptian
Hieroglyphs come to mind respectively.
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