Representing Multidimensional Trees

David Brown, Colin Kern,
Alex Lemann, Greg Sandstrom

Earlham College

Introduction

e Presentation Layout

— Dave: An Introduction to Multidimensional Trees and

Grammars

— Alex: Representing Multidimensional Trees

— Colin: A Chomsky Normal Form (CNF) Transformation for

Multidimensional Grammars.

An Example Context-Free Grammar (CFG)

v LS MQ

(%,V, 8, P)
1)}

15}
S

{§ - 8555 —(95),5— ()}

Initial

An Example CFG as a Set of Local Trees

1

A .
Rule 1 /S\
S s

U (/f) /f /f
/R Rule 3

()

) C

An Example Tree-Adjoining Grammar (TAG)

2. {abc}
V: {S}
S. s
S{B1, B2}
| : al: ‘
C
S{} S{}
/ N\ / N\
A Bl A S{BL B2} B2 b S {BL B2
/ N\ / N\

So{r a So{}l b

5

An Example TAG Derivation

/ N\
/N

/ N\
/ N\

Sog b

/ N\

S b

/ N\

Sgo a

An Example Multidimensional Grammar

2: {abc}
V: {ILSS}
S |
/S’
S\\ /\ S: \/\\ 1c-7°S
P: b N

AD

A Multidimensional Derivation and 2D Yield

An Infinite Hierarchy Equivalent to Weir’s
Control Language Hierarchy

S
/ N\
X S
y/\z R s
3{/\
N)S\ s
I S
S\g\x/“\& *X/\\S
/\ /\

Representing Multidimensional Trees

David Brown, Colin Kern,
Alex Lemann, and Greg Sandstrom

Earlham College

10

Left-child Right-sibling Form

A

AN,
AN

11

ExLeft and ExUp Definitions

EXLEFT

ExUp

12

Building a 2d tree using ExUp and ExLeft

ExUp(F,~) =1t1
EXLEFT(t1,~) = f1
_ ExUp(E, ~) = t2
\\D—— N EXLEFT(t1, f1) = f2
| ExUp(D,~) =t3
EXLEFT(t3,~) = f3
ExUP(C, f2) = t4
EXLEFT(t4, f3) = f4
ExUp(B,~) =t5
EXLEFT(t5,t4) = f5
ExUPr(A, f5) = t6
EXLEFT(t6, ~) = final tree

13

Unified Constructor for Tree-ordered Forest

Definition
X PANEEEEEEE X R SELEEEEEEE
/ / f]_\\\\ //// fl \\

14

Building a 2d tree using the unified constructor

T(F,~,~) = f1
T(E, f1,~) = f2
T(D,~,~) = f3
T(C, 3, 2) = f4
T(B, f4,~) = f5
T(A, ~, f5)

15

Building a 3d tree using the unified constructor

16

T(J, vy,) =

T, f3,~,~) =[5

T(H,~, f5,~) = f6

Then we create f4:
T(Gyrvyvyv) =

T(F, f1,~,~) =

And the last child of D is f2:
T(E,~,~,~) = f2

Next we combine them in D:
T(D, f2, f4, f6) = f7

And then we can continue to
build the rest of the tree:
T(C, f7,~,~) = f8
T(B,~, f8 ~)=f9

T(A, ~,~, f9) = f10

Tree Definition

Abstract Data Type Algebra

17

Abstract data type realized as a C+-+ class

template<class label_type>

class forest

{
public:
forest(label_type label, vector<forest*> links)

void set_label(label_type new_label);

void set_link(std::size_t link_number, forest* new_link) ;

label_type get_label() const;

tree* get_successor(std::size_t link_number) const;
private:

label_type label;

vector<forest*> link;

18

.

E

Flat form representation

— T N ~—

— N M F 0
R e T
[-
RN N R
N,ﬂ,wﬁ,ﬂﬂ
&8 2g4d
S

19

A CNF Transtormation for

Multidimensional Grammars

David Brown, Colin Kern,
Alex Lemann, Greg Sandstrom

Earlham College

20

Chomsky Normal Form

A A C
SN NN N
B C D B CcC C D

21

XXX X—X—X X—X—X

22

An example factoring of a 3d tree

23

The entire factoring of the tree

B
A ///
CcC—D’
A ///
C—D E 1
T
B D
A D—E
C—D E 1
D
F G H D K
D F—G
D,',' ///
F—G H
T
G"" ///
G—H

24

A 4-dimensional local tree of a grammar being
factored into 2-branching local trees

. E—F
-
¢
B - y
. D—E—F
A B)/
D—F

25

The transformation algorithm:
Traverse the tree in a depth-first method.

For every node, check each link for a successor that breaks the
2-branching definition.
For every such successor, split the tree into two trees:

— A tree with the subtree rooted at the successor removed,

with the current node renamed to a unique label.

— The subtree rooted at the successor with the current node
at the root.

Use 7 nodes to fill out the nodes of a new tree if the dimension
is less than the dimension of the original tree.

Repeat on each factored tree until no more factors are created.

26

2 dimensions 3 dimensions 4 dimensions

of nodes = # of dimensions + 1

27

>
>
\

B

C—D

XXX X—X—X X—X—X

28

N3(0) = 1
N3(d) = Ng(d—1)2—N3(d—1>‘|‘2
We can solve this recursion:

N(d) = (k)
The growth is hyper-exponential in the dimension

29

The 2-branching trees show linear growth in the dimension.
The 3-branching trees show hyper-exponential growth in the

dimension.

30

Theorem 1 For a full d-dimensional, n-branching local tree, the
number of local trees in the factored form required is equal to the

total number of 1-dimensional links.

While the number of local trees in the grammar grows by a factor
that is hyper-exponential in the dimension, the growth is optimal
in the sense that it differs only by a constant factor from the
growth in the number of nodes in arbitrary branching local trees as

a function of the dimension.

31

Definition 1 Tree-ordered Forests
o ~ is an (empty) (¢,d)-forest for all 0 < i < d

o Ifty, ta, ..., tq are, respectively, (0,d)-, (1,d)-, ...,
(d —1,d)-forests and X € 3 then T(X,t1,ta,...,tq) is a
(j,d)-forest for all 0 < j <1, where i is the smallest dimension
such that t; is not empty, or d if all ti. are empty. Here each t

18 the successor of the new node labeled X in the kth dimension.

e Nothing else is a tree-ordered forest.

32

