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An Example Context-Free Grammar (CFG)
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An Example CFG as a Set of Local Trees
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An Example Tree-Adjoining Grammar (TAG)
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An Example TAG Derivation
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An Example Multidimensional Grammar
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A Multidimensional Derivation and 2D Yield



An Infinite Hierarchy Equivalent to Weir’s
Control Language Hierarchy
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Left-child Right-sibling Form
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ExLeft and ExUp Definitions
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Building a 2d tree using ExUp and ExLeft

ExUp(F,~) =1t1
EXLEFT(t1,~) = f1
_ ExUp(E, ~) = t2
\\D—— N EXLEFT(t1, f1) = f2
| ExUp(D,~) =t3
EXLEFT(t3,~) = f3
ExUP(C, f2) = t4
EXLEFT(t4, f3) = f4
ExUp(B,~) =t5
EXLEFT(t5,t4) = f5
ExUPr(A, f5) = t6
EXLEFT(t6, ~) = final tree

13



Unified Constructor for Tree-ordered Forest

Definition
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Building a 2d tree using the unified constructor

T(F,~,~) = f1
T(E, f1,~) = f2
T(D,~,~) = f3
T(C, 3, 2) = f4
T(B, f4,~) = f5
T(A, ~, f5)
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Building a 3d tree using the unified constructor
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T(J, vy, ) =

T, f3,~,~) =[5

T(H,~, f5,~) = f6

Then we create f4:
T(Gyrvyvyv) =

T(F, f1,~,~) =

And the last child of D is f2:
T(E,~,~,~) = f2

Next we combine them in D:
T(D, f2, f4, f6) = f7

And then we can continue to
build the rest of the tree:
T(C, f7,~,~) = f8
T(B,~, f8 ~)=f9

T(A, ~,~, f9) = f10



Tree Definition

Abstract Data Type Algebra
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Abstract data type realized as a C+-+ class

template<class label_type>

class forest

{
public:
forest(label_type label, vector<forest*> links)

void set_label(label_type new_label);

void set_link(std::size_t link_number, forest* new_link) ;

label_type get_label( ) const;

tree* get_successor(std::size_t link_number) const;
private:

label_type label;

vector<forest*> link;
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A CNF Transtormation for
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Chomsky Normal Form
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XXX X—X—X X—X—X
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An example factoring of a 3d tree
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The entire factoring of the tree
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A 4-dimensional local tree of a grammar being
factored into 2-branching local trees
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The transformation algorithm:
Traverse the tree in a depth-first method.

For every node, check each link for a successor that breaks the
2-branching definition.
For every such successor, split the tree into two trees:

— A tree with the subtree rooted at the successor removed,

with the current node renamed to a unique label.

— The subtree rooted at the successor with the current node
at the root.

Use 7 nodes to fill out the nodes of a new tree if the dimension
is less than the dimension of the original tree.

Repeat on each factored tree until no more factors are created.
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2 dimensions 3 dimensions 4 dimensions

# of nodes = # of dimensions + 1
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N3(0) = 1
N3(d) = Ng(d—1)2—N3(d—1>‘|‘2
We can solve this recursion:

N(d) = (k)
The growth is hyper-exponential in the dimension
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The 2-branching trees show linear growth in the dimension.
The 3-branching trees show hyper-exponential growth in the

dimension.
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Theorem 1 For a full d-dimensional, n-branching local tree, the
number of local trees in the factored form required is equal to the

total number of 1-dimensional links.

While the number of local trees in the grammar grows by a factor
that is hyper-exponential in the dimension, the growth is optimal
in the sense that it differs only by a constant factor from the
growth in the number of nodes in arbitrary branching local trees as

a function of the dimension.
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Definition 1 Tree-ordered Forests
o ~ is an (empty) (¢,d)-forest for all 0 < i < d

o Ifty, ta, ..., tq are, respectively, (0,d)-, (1,d)-, ...,
(d —1,d)-forests and X € 3 then T(X,t1,ta,...,tq) is a
(j,d)-forest for all 0 < j <1, where i is the smallest dimension
such that t; is not empty, or d if all ti. are empty. Here each t

18 the successor of the new node labeled X in the kth dimension.

e Nothing else is a tree-ordered forest.
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