
Representing Multidimensional Trees

David Brown, Ian Kelly, Colin Kern, Alex Lemann, and Greg Sandstrom
Earlham College

Department of Computer Science

Richmond, Indiana
{brownda,kellyia,kernco,lemanal,sandsgr}@cs.earlham.edu

October 15, 2004

Abstract

This paper develops a formal definition of
multidimensional trees as abstract structures
in “left-child, right-sibling” form. After de-
veloping this abstract definition, we show
how it can be directly implemented as an
ADT suitable for use in parsing applications.
Additionally, we show how, when viewed in
a slightly different way, our definition yields
a flat form suitable for serialized input and
output.

1 Introduction

Traditionally, the context-free grammars
(CFGs) are represented as a set of string
rewriting rules: a CFG is a four-tuple G =
〈Σ, V, S, P 〉, where Σ is the terminal alpha-
bet, V is a finite set of non-terminal symbols,
S ∈ V is the initial symbol, and P is a fi-
nite set of productions—each of which map
some symbol, x ∈ V , to a string of symbols,
y ∈ (Σ ∪ V)∗ [Sip01].

We often are interested in the parse trees
that derive strings in a grammar, rather than
just the strings that are derivable. We can

choose to interpret the definition of G differ-
ently, and represent the context-free gram-
mars using local trees [GS84, Rog03]. Inter-
pret each production in P as a local tree (a
tree with height h ≤ 1) having a yield la-
beled in (Σ ∪ V)∗ and a root labeled in V .
Let each member of Σ label the root of a
trivial local tree, and let the initial symbol
S label the root of a trivial derivation tree
T0. The context-free derivation of any Ti+1

from Ti can be performed by by replacing a
leaf node of Ti, labeled by some x, with a lo-
cal tree in P that has root labeled x—that
is, by concatenating local trees from P to the
derivation tree Ti. The derived string, at any
point in the process, is the string yield (the
left-to-right concatenation of the leaf nodes)
of Ti. A string is in the language recognized
by G, L(G), if and only if it is in Σ∗ and is
the string yield of some derivation tree.

We can see that, in this representation,
each local tree in P is grammatically equiva-
lent to a production in a traditional CFG—
the tree maps some root symbol, x ∈ V , to
some ordered set of children y ∈ (Σ ∪ V)∗.
Figure 1 shows an example grammar in lo-
cal tree form, plus an example derivation

)

Rule 1

Rule 2

Rule 3

S

S

S

)(S

S S

(

(3)

S

S

(1)

(3)

(2)

S

()

S

S

() S

()

S

()

(1)

(3)

Figure 1: An example context-free grammar
in local tree form, plus one possible derivation
tree with root labeled by S.

β

γ
u

γ
l

γ
l

γ
u

β

Γ:

+

Figure 2: Adjunction of tree β into Γi.

tree constructed from rules in the grammar.
The example derivation tree yields the string
(())()().

Tree adjoining grammars (TAG) [JS96] lift
the context-free grammars from a string-
generating formalism to a tree-generating for-
malism. Just as context-free grammars can
be represented as a set of string rewriting
rules, tree adjoining grammars can be repre-
sented as a set of tree rewriting rules. While
CFGs derive strings by symbol replacement,
TAGs derive trees by a process known as ad-
junction.

Conceptually, tree adjunction in TAG is
the substitution of one tree into another at
some node (Figure 2). To adjoin some aux-
iliary tree β to some derivation tree Γi at
node x, we require that the auxiliary tree β

have a root node with the same label as x,
as well as a distinguished leaf node with the

same label as x (known as the “foot” node, or
foot(β)). To perform the adjunction, we cre-
ate two trees from Γi—γu (identical to Γi, but
with the subtree below x deleted), and γl (the
subtree rooted by x). We create Γi+1 from Γi

via two replacements: x in the frontier of γu

is replaced by β, and foot(β) is replaced by
γl.

Adjunction, if allowed to occur only at
frontier nodes, is exactly equivalent to tree
concatenation. The ability to replace non-
frontier nodes with trees is what differenti-
ates TAGs from our local tree representation
of CFGs. This same ability affords TAGs a
degree of context-sensitive generative power
not found in CFGs.

Thus far, we have defined a local tree as
a traditional parent/child n-branching tree
with restricted height (h ≤ 1). From a dif-
ferent point of view, a local tree is of the
exact structure of a single CFG production:
it maps one point (the root symbol) to one
string of symbols licensed to replace it. From
this perspective, a local tree can be thought
of as an arbitrary one-dimensional string of
symbols, dominated in the second dimension
by exactly one symbol. This definition of a
local tree can be generalized to arbitrary di-
mensions, in a way analogous to the construc-
tion of topological simplicies. To construct a
d-dimensional local tree T d from an arbitrary
(d−1)-dimensional tree T d−1, we add exactly
one new node. This new node serves as the
root of T d and is the immediate predecessor,
in an orthogonal dimension1, of every node
in T d−1 (Figure 3). The local yield of T d is

1To represent a multi-dimensional local structure
on a two-dimensional medium, we place each d-
dimensional root to the left of the (d−1)-dimensional
structure it dominates, and connect it to each node
in that (d − 1)-dimensional structure with a line. A
unique line style is used for each dimension.

S
S

S’

b

b

S
S

S’

a S’

a

S’

Figure 3: Two three-dimensional local trees.
These trees denote a tree-adjoining grammar
in local tree form.

’

S
Sa

S

a S
S

S
S

S

b

b

S
Sa

S

a S

’
’

’

’

’

Figure 4: One possible three-dimensional
derivation tree.

T d−1.

Concatenation of these local d-dimensional
structures allows the construction of arbi-
trary d-dimensional trees (Figure 4). For an
arbitrary d-dimensional tree, we note that the
(d−1)-dimensional yield is constructible: the
yield of an arbitrary d-dimensional tree is ob-
tained by combining, in some well-defined or-
der2, all of the (d−1)-dimensional yields of its
d-dimensional local components (Figure 5).

For the CFGs, we were able to represent
string rewriting via concatenation of trees—
that is, we were able to reduce substitution in
a structure to concatenation of structures—
purely by raising the dimensionality of the
structure. We moved from substitution on
one-dimensional structures (strings) to con-
catenation of two-dimensional local struc-
tures, while maintaining equivalent genera-

2For dimensions greater than two, there is an or-
dering ambiguity that necessitates the storage of ex-
tra per-node information.

a

S

a S

b

S b

S a

S

S

a

S

Figure 5: The two-dimensional yield of a
three-dimensional derivation tree.

tive power. In a similar fashion, we can
achieve generative power equivalent to that
of TAG using only concatenation—by mov-
ing from adjunction and substitution in two-
dimensional structures to concatenation of
three-dimensional local structures [Rog03].

More simply, we can capture the generative
power of TAG with a slight variation on our
definition of CFGs as sets of local structures:
we need only raise the dimensionality of the
local structures in P by one. This process
may be iterated to higher dimensions, creat-
ing an infinite hierarchy of language classes
that, in terms of string-generating power, di-
rectly corresponds to Weir’s control language
hierarchy [Wei92].

If viewed as a multidimensional grammar,
Figure 3 captures the copy language over
{a, b} using a set of three-dimensional local
trees. Figure 4 shows one possible deriva-
tion in this grammar. Figure 5 shows the
two-dimensional yield of the derivation tree
in Figure 4, with circles around the two-
dimensional yield of each three-dimensional
local tree. The one-dimensional yield of Fig-
ure 5 is the string recognized by the deriva-
tion tree in Figure 4.

Dewdney [Dew74] discusses a similar (but

formally distinct) graph-theoretic notion of
multidimensional trees. A formally equiv-
alent notion of multidimensional trees, as
well as a formally distinct notion of multi-
dimensional grammars, is discussed by Bald-
win and Strawn [BS91]. Adaptive k-d trees
[Sed98], while useful for searching in a mul-
tidimensional space, are not strictly multidi-
mensional in their structure.

Our group is interested in building parsers
for grammars based on multidimensional
trees. In this paper, we develop a formal def-
inition of these multidimensional trees as ab-
stract structures that can be directly realized
as an ADT. We then implement this ADT as
a C++ class. Further, by interpreting this
abstract structure algebraically we obtain a
flat form suitable for file input and output.

2 Tree Construction

2.1 Tree-building Operations

The classic representation of 2-dimensional
trees, a parent with a set of children, is dif-
ficult to generalize into a form for a tree
in higher dimensions. Since a 2-dimensional
tree has arbitrarily many 2-dimensional chil-
dren that have a 1-dimensional ordering, a
node in a 3-dimensional tree would have ar-
bitrarily many 3-dimensional children that
have a 2-dimensional (partial) ordering. For
an n-dimensional tree, a node would have ar-
bitrarily many n-dimensional children with
an (n − 1)-dimensional (partial) ordering.

Instead, we choose to use a well-known
“left child, right sibling” representation
[Sed98] for 2-dimensional trees. Instead of
maintaining references to arbitrarily many 2-
dimensional children, each node contains a
reference to a single minimum 2-dimensional
successor (the “left child”) and to a sin-

gle minimum 1-dimensional successor (the
“right sibling”). With this representation,
the first child of a node is positioned as the
2-dimensional successor of that node. The
remaining children are then each placed as
the 1-dimensional successor of the preceding
child. Note that in full generality, this repre-
sentation admits the possibility that the root
of the tree may have a right sibling. We will
interpret such a structure as a linearly or-
dered forest, and we will interpret the case
where the root has no right sibling as the triv-
ial forest, a single tree.

Bottom-up construction for the usual left-
child/right-sibling trees has two operations
as seen in Figure 6: extending the forest by
adding another tree at the beginning of the
ordered forest (which we will call ExLeft),
and adding a root as the parent of the trees in
an ordered forest (which we will call ExUp).

Definition 1 Linearly Ordered Forests

• ∼ is an empty forest.

• If t1 is a tree and t2 is a linearly ordered
forest then ExLeft(t1, t2) is a linearly
ordered forest.

• If t1 is a linearly ordered forest and X ∈
Σ then ExUp(X, t1) is a tree.

• Nothing else is a linearly ordered forest.

This allows us to construct arbitrarily
branching 2-dimensional trees using only two
links per node.3 We will later generalize this
structure to allow us to construct arbitrary
dimensional, arbitrary branching structures
requiring only one link per dimension per
node.

3An interesting consequence of using the left-
child/right-sibling tree organization is that it allows
every n-branching tree to be embedded in a binary
branching structure.

X Y X Y

Y

X

Y

X

Figure 6: The two tree-building operations.

DCB

A

FE

Figure 7: An example two-dimensional tree.

2.1.1 Example

First we will look at a 2-dimensional example
using these two tree building operations. We
will build the tree shown in Figure 7. In the
figure, solid lines represent the actual links,
while the dotted lines are there only to bet-
ter visualize the tree structure. An annotated
version of the tree in Figure 8 shows the var-
ious local trees and forests that make up the
tree as circled groups.

Starting at the bottom, ExUp(F,∼) cre-
ates tree t1. ExLeft(∼, t1) combines t1
with an empty tree to form the singleton
forest f1. Similarly, ExUp(E,∼) forms
tree t2, which is then added to f1 with
ExLeft(f1, t1) to create f2. Repeating
this step once again, ExUp(D,∼) creates t3
and ExLeft(∼, t3) creates f3. t4 is cre-
ated with ExUp(C, f2) and then added to
f3 to create f4 through ExLeft(f3, t4).
ExUp(B,∼) creates t5 which is used in
ExLeft(f4, t5) to create f5. The tree is

FE ~

~~

DCB

A

~

~~

~

t1 f1t2

f2

t3 f3t4

f4

t5

f5

t6

Figure 8: An example tree annotated to show
trees and forests.

then completed with ExUp(A, f5) to create
t6 and ExLeft(∼, t6) to construct the final
tree.

2.2 Unified Constructor

Generalizing the two tree-building operations
to arbitrary dimensions is simpler if we cre-
ate a new, unified constructor. Instead of first
adding siblings to create a forest, and then as-
signing the forest a root node, we will do this
in one step. Taking a label and two forests,
we will create a new node that is the parent of
the roots of the trees in the first forest, and is
the leftmost sibling of the second forest. The
“root of a forest” is simply the root of the
minimum tree in that forest. In contrast, we
may refer to the minima of a forest—these
are simply the roots of the individual trees
of the forest, and they are incomparable to
each other in the major dimension of the for-
est. The root of the forest is the unique min-
imum of the forest if and only if the forest is
a singleton forest, i.e. a tree.

Using the unified constructor, a 2-
dimensional (singleton) forest is formed if the
forest has no 1-dimensional child. Otherwise,
a proper forest is formed. Each of the siblings

of the new node is a minimum.

Definition 2 Linearly Ordered Forests—
Unified Constructor

• ∼ is an empty linearly ordered forest.

• If t1 and t2 are linearly ordered forests
and X ∈ Σ then T (X, t1, t2) is a linearly-
ordered forest. Here t2 is the set of two-
dimensional children of the new node la-
beled X, and t1 is the set of its siblings
to the right.

• Nothing else is a linearly ordered forest.

2.2.1 Example

Let us use the unified constructor to con-
struct the tree in Figure 7. Every pair of
ExUp and ExLeft invocations that use the
same first argument can be combined, with
that shared term as the first argument of the
T constructor. The remaining arguments
of the constructor would be the remaining
terms of the ExUp and ExLeft instances,
respectively. The terms of the construction
would be:

T (F,∼,∼) = f1

T (E, f1,∼) = f2

T (D,∼,∼) = f3

T (C, f3, f2) = f4

T (B, f4,∼) = f5

T (A,∼, f5) completes the tree.

2.3 Extending to Arbitrary Di-

mensions

As our trees become more complex, it is help-
ful to define some terminology. This termi-
nology should allow us to talk about various
aspects of an n-dimensional tree without our

C
D

E

G
F

B

A

J

H

I

Figure 9: An example three-dimensional tree.

description becoming obfuscated in bulky ex-
planation.

Definition 3 n-dimensional Local Tree
A local tree is a tree of height ≤ 1 in each

dimension. This consists of a root and an
(n − 1)-dimensional yield, which we will call
the local yield.

Definition 4 (n − 1)-dimensional Local
Yield

An (n−1)-dimensional local yield of a node
is the set of all n-dimensional children of
that node, which are ordered as an (n − 1)-
dimensional singleton forest, a tree—there
must be exactly one minimum with respect to
the (n − 1)-dimensional ordering.

Definition 5 (n − 1)-dimensional Child
Structure

An (n − 1)-dimensional child structure of
an n-dimensional node is the forest of trees
rooted at that node’s (n−1)-dimensional local
yield.

Note that the local yield of a node is an
(n − 1)-dimensional tree of nodes, while the
child structure of the same node is an (n−1)-
dimensionally ordered forest of n-dimensional
trees rooted at those nodes.

Now we can restate the way our 2-
dimensional trees are built. Every node in
a 2-dimensional forest roots two local trees:
a 2-dimensional local tree, the yield of which

are the node’s two-dimensional children, and
a 1-dimensional local tree whose yield is the
node’s right sibling. Consequently, the 2-
dimensional successor is the minimum point
in the node’s 1-dimensional child structure,
and the 1-dimensional successor is the mini-
mum point in the node’s 0-dimensional child
structure. Both these child structures are
linearly ordered forests. To extend this to
arbitrary dimensions, we will say that every
node in an n-dimensional tree has n succes-
sors. Each successor in the ith dimension is
the minimum point in that node’s (i − 1)-
dimensional child structure for 1 ≤ i ≤ n.
We extend the unified construction as follows:

Definition 6 (Preliminary) Tree-ordered
Forests

• ∼ is an (empty) d-dimensional forest.

• If t1, t2, . . . , td are tree ordered forests
and X ∈ Σ then T (X, t1, t2, . . . , td) is
a tree-ordered forest. ti is the set of i-
dimensional children of the new node la-
beled X.

• Nothing else is a tree-ordered forest.

2.3.1 Example

To see the unified constructor for n dimen-
sions, we will look at the 3-dimensional tree
shown in Figure 9. As in Figure 7, the solid
lines are the actual links while the dotted
lines are present to better visualize the tree
structure. Again, the tree has been anno-
tated (Figure 10) to show the local trees and
forests.

The constructor for this tree will take
four arguments: the label of the node, and
three forests. We will indicate this construct
as T (W, X, Y, Z) where W is the label, X

is a forest and the 1-dimensional successor

C
D

E

G
F

B

A

J

H

I

~ ~
~

~

~
~

~
~

~
~

~~

~

~
~

~

~

~

~

f1

f2
f3

f4

f5

f6

f7

f8

f9

f10

Figure 10: An example three-dimensional
tree, annotated to show trees and forests.

of W , Y is a forest and the 2-dimensional
successor of W , and Z is a forest and the
3-dimensional successor of W . The empty
tree is represented by ∼. In all of our
constructions of trees, the order that the
forests are constructed in is flexible. Until
two forests are combined, they can be built
independently of one another.

First we will construct f6:
T (J,∼,∼,∼) = f3

T (I, f3,∼,∼) = f5

T (H,∼, f5,∼) = f6

Then we create f4:
T (G,∼,∼,∼) = f1

T (F, f1,∼,∼) = f4

And the last child of D is f2:
T (E,∼,∼,∼) = f2

Next we combine them in D:
T (D, f2, f4, f6) = f7

And then we can continue to build the
rest of the tree:

T (C, f7,∼,∼) = f8

T (B,∼, f8,∼) = f9

T (A,∼,∼, f9) = f10

2.4 (i, d)-forests

Our definition of tree-ordered forests is not
yet complete. In the above example, note
that when assigning f6 as the 3-dimensional
successor of D, the root of f6 does not have a
1-dimensional successor. In fact, it can’t have
a 1-dimensional successor—it is the root of a
2-dimensional local yield, which by our defi-
nition must be a singleton 2-dimensional for-
est. Only the empty tree can be used for this
constructor argument, and Definition 6 needs
to be modified to include this. To denote a
d-dimensional forest with a unique minimum
(within a local structure, in this sense) in di-
mension i, we define an (i, d)-forest, where
0 ≤ i ≤ d, as a forest whose root has an
empty j-dimensional local yield for all j < i.
A node with no i-dimensional children for all
i < j can be interpreted as the root of a (j, d)-
forest. Having done this, we can insist that
the only forests accepted as a 3-dimensional
successor in the unified constructor be (2, d)-
forests, the subset of forests that do not have
a 1-dimensional successor.

Lemma 1 If X is the root of an i-
dimensional local yield, it has no j-
dimensional successor for j < i.

Proof: When i = 0 or i = 1, this is trivially
true. For i > 1, if X has any j-dimensional
successor for j < i, then it is not the unique
minimum of the local yield and hence is not
the root of that local yield, which must be a
singleton forest. a

Corollary 1 Every (i, d)-forest is also a
(j, d)-forest for j < i.

Definition 7 Tree-ordered Forests—Fully
Typed

• ∼ is an (empty) (i, d)-forest for all 0 ≤
i ≤ d

• If t1, t2, . . . , td are, respectively, (0, d)-,
(1, d)-, . . . , (d− 1, d)-forests and X ∈ Σ
then T (X, t1, t2, . . . , td) is a (j, d)-forest
for all 0 ≤ j ≤ i, where i is the smallest
dimension such that ti is not empty, or
d if all tk are empty. Here each tk is the
successor of the new node labeled X in
the kth dimension.

• Nothing else is a tree-ordered forest.

By Corollary 1, the set of (i, d)-forests is
a subset of the set of (i − 1, d)-forests for all
0 < i ≤ d.

Going back to Figure 10, we can label each
tree as an (i, d)-forest. f1, f2, and f3 are
(0,3)-forests. f4, f5, f7, and f8 are (1,3)-
forests and, by Corollary 1, (0,3)-forests. f6
and f9 are (2,3)-forests (and both (1,3)- and
(0,3)-forests). Finally, f10 is a (3,3)-forest.

3 Concrete Forms

In order to work with these trees in more con-
crete applications such as programs, we must
develop a realization of these trees both as an
abstract data type for storing trees in mem-
ory, and as a string to store trees in files and
use as input.

3.1 Abstract Data Type

In order to create programs to work with
these trees, we will need a way of construct-
ing data structures that can represent an n-
dimensional forest. The information we need
to store falls directly out of the definition of

forests. The forest constructor T takes a la-
bel and a sequence of (i, d)-forests. Our data
structure will then store the label of the node
created and references to the forests that are
that node’s local yields. With this model, one
instance of our structure can represent one
node, with the label and pointers to the local
yields being stored. Since each local yield is
made up of smaller local yields, what is re-
ally being pointed to is a node that is the
minimum of that local yield.

The constructor for building forests follows
Definition 7. This function takes a list of ref-
erences to forests and a label and returns a
new forest rooted at that label. Each element
of the list of forests passed to the constructor
represents its successor in a particular dimen-
sion designated by the ordering.

Selectors would be needed to determine the
label and successor of each node. Mutators
could also be included to allow modification
of the label and the successors, but this is not
necessarily needed since the constructor can
be used to set these.

Here is an example of this ADT, realized
as a C++ class:

template<class label_type>

class forest

{

public:

forest(label_type label,

vector<forest*> links)

void set_label(label_type new_label);

void set_link(std::size_t link_number,

forest* new_link);

label_type get_label() const;

tree* get_successor(

std::size_t link_number) const;

private:

label_type label;

vector<forest*> link;

}

Because our class uses the the C++ vector

in its implementation, it is truly polymorphic

in its dimensionality. The dimensionality of
the forests is not explicit in this data type;
it is however noted in the size of the vec-
tor. While the constructor allows for a d-
dimensional forest to reference forests of dif-
ferent dimensionality this may be disallowed
by adding assertions to the constructor to en-
sure uniformly dimensional trees.

3.2 Flat Form

When working with complex trees as the in-
put or output of a program or attempting
to store trees in text files, it becomes nec-
essary to develop a concise way of repre-
senting the tree in a flat (string) form. A
form of this type can be taken directly from
the free algebra generated by the construc-
tor from Σ and ∼. One variation, to allow
for more concise and easier to read trees, is
to write the terms as X(t1, t2, . . . , td) rather
than T (X, t1, t2, . . . , td).

Definition 8 Flat Form

• ∼ is an (empty) (i, d)-forest in flat form
for all 0 ≤ i ≤ d

• If t1, t2, . . . , td are, respectively, (0, d)-,
(1, d)-, . . . , (d−1, d)-forests in flat form
and X ∈ Σ then X(t1, t2, . . . , td) is a
(j, d)-forest in flat form for all 0 ≤ j ≤ i,
where i is the smallest dimension such
that ti is not empty, or d if all tk are
empty. Here each tk is the successor of
the new node labeled X in the kth dimen-
sion.

• Nothing else is a forest in flat form.

3.2.1 Example

The terms of the algebra for the tree in Fig-
ure 7 are:

F (∼,∼)
E(F (∼,∼),∼)
D(∼,∼)
C(D(∼,∼), E(F (∼,∼),∼))
B(C(D(∼,∼), E(F (∼,∼),∼)),∼)
A(∼, B(C(D(∼,∼), E(F (∼,∼),∼)),∼))

4 Conclusion

We have given an inductive definition of tree-
ordered forests extending the standard “left
child, right sibling” form of 2-dimensional
trees to multiple dimensions. This abstract
class of structures has been interpreted in two
ways. First, we used this definition to build a
compact abstract data type for multidimen-
sional tree nodes, with size linear in the di-
mensionality of the tree. An instance of this
ADT was realized as a C++ class which is
fully polymorphic in its dimensionality. Our
definition can also be understood as a term
algebra which leads to the definition of a flat
form intended for file input and output. Our
group is now using these representations in
developing parsing algorithms for the multi-
dimensional grammars described in the intro-
duction.

References

[BS91] William A. Baldwin and George O.
Strawn. Multidimensional trees.
Theoretical Computer Science,
84:293–311, 1991.

[Dew74] A. K. Dewdney. Higher-dimensional
tree structures. Journal of Combi-
natorial Theory, 17:160–167, 1974.

[GS84] Ferenc Gécseg and Magnus Steinby.
Tree Automata. Akadémiai Kiadó,
Budapest, 1984.

[JS96] Aravind K. Joshi and Yves Schabes.
Tree-adjoining grammars. In A. Sa-
lomaa and S. Rozenberg, editors,
Handbook of Formal Languages and
Automata. Springer-Verlag, 1996.

[Rog03] James Rogers. wMSO theories as
grammar formalisms. Theoretical
Computer Science, 293(2):291–320,
2003.

[Sed98] Robert Sedgewick. Algorithms in
C++. Addison-Wesley, 3rd edition,
1998.

[Sip01] Michael Sipser. Introduction to the
Theory of Computation. PWS Pub-
lishing Company, 20 Park Plaza,
Boston, MA 02116, 2001.

[Wei92] David J. Weir. A geometric hierar-
chy beyond context-free languages.
Theoretical Computer Science, 104,
1992.

