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Abstract

This paper explores a transformation for fac-
toring arbitrary branching multidimensional
local trees into sets of strictly 2-branching lo-
cal trees, resembling the conversion to Chom-
sky Normal Form for 2-dimensional trees. We
outline a converse process to extract the orig-
inal arbitrary branching local tree from sets
of local tree factors. Once we complete the
converse process, we expect to simultaneously
prove the correctness of both. The paper also
explores the rate of growth in multidimen-
sional trees with constant branching factor
and increasing dimensionality, and relate it
to the growth in the size of the grammar as
a result of the factorization.

1 Introduction

Our group is exploring the parsing of
grammars represented as higher-dimensional

trees1 using a CKY-style algorithm [HMU01].
These grammars are sets of local multidimen-
sional trees corresponding with the rewriting
rules of a Context Free Grammar, which can
be though of as 2-dimensional trees. Because
the complexity of CKY is dependent on the
branching factor of the local trees, we need an
algorithm to reduce the branching factor to
2-branching in arbitrary dimensionality, akin
to the conversion to Chomsky Normal Form
(CNF) in the 2-dimensional case [HMU01].
As is the case with the conversion to CNF in
two dimensions, the reduction from arbitrary
branching to 2-branching in higher dimen-
sions does not change the generative power
of the grammar.

1For an introduction to these grammars and mul-
tidimensional trees see our paper Representing Mul-
tidimensional Trees also submitted to this conference
[BKK+04] and [Rog03].
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We use a left-child/right-sibling form to rep-
resent 2-dimensional trees [BKK+04]. In-
stead of the traditional idea of a parent with
a left child and a right child (in a binary
branching tree), we consider the left child to
be the 2-dimensional successor of the parent,
and the right child is the 1-dimensional suc-
cessor of the parent’s 2-dimensional succes-
sor. This allows arbitrary branching trees
while keeping the number of successors per
node constant. Henceforth, we will use the
term successor instead of child to make it dis-
tinct from the classic notion of a child. We
will use these two terms consistently through-
out the paper, with child referring to any
node related in the dimension, and successor
referring to only the minimum child in that
dimension.

We then extend this idea to more than two
dimensions, where every node can have up
to d successors, one per dimension, where d

is the dimensionality of the tree. Figure 1
shows a 3-dimensional tree. The successors
of each node are indicated with bold lines,
while all other lines indicate children.

3 Size of Trees

Since our transformation will factor b-
branching trees into a sets of 2-branching
trees in a process similar to the CNF transfor-
mation, we can expect the size of the gram-
mar to grow in a similar fashion. Since the
set of 2-branching trees must preserve every
node in the original b-branching tree, we can

expect the optimal growth in the size of our
grammars to be related to the growth in the
size of b-branching multidimensional trees as
a function of the dimension.

3.1 Size of 2-branching Trees

Lemma 1 Every n-dimensional successor
(in the left-child, right-sibling sense) in a d-
dimensional, 2-branching tree can have only
an (n − 1)-dimensional successor and a d-
dimensional successor.

Proof: An n-dimensional successor in a
d-dimensional, 2-branching tree cannot have
any successor in dimensions less than n − 1,
because for any root X of an i-dimensional
local yield, X has no j-dimensional successor
for j < i,2 and it can have no successor in
any dimension greater than or equal to n,
except for dimension d, because the node
already has a parent in each such dimension,
and so the inclusion of such a successor
would make the branching factor in the
dimension of n − 1 more than 2. a

Corollary 1 In a d-dimensional 2-
branching local tree there are exactly
d + 1 nodes.

Since no element in the yield of the local
tree will have a successor in the d-dimension,

2This is shown in Representing Multidimensional
Trees. Since X is a root of an i-dimensional local
yield, having a successor in any dimension less than
i would invalidate its role as the unique minimum of
an i-dimensional local yield.
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Figure 1: A full 3-dimensional, 3-branching
tree.
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Figure 2: A 2-branching 4-dimensional local
structure.

and the root will only have a successor in the
d-dimension, each node in the local tree only
has one successor.

Looking at a d-dimensional 2-branching
structure, Corollary 1 requires there to be
d + 1 nodes in the structure. Thus the size
of the 2-branching local tree is linear in the
dimension d.3

3Another perspective on the growth of 2-
branching trees is to look at them as simplexes.
When we increase the dimensionality of a local 2-
branching tree, we are simply adding a root in an
orthogonal dimension to an existing 2-branching lo-
cal tree.

3.2 Size of b-branching Trees

Now we need to extend this to the b-
branching case. Since we are only inter-
ested in the lower bound, looking at the 3-
branching case will suffice. As seen in Figure
1, the number of nodes in a 3-dimensional,
3-branching tree (14 nodes) is large com-
pared to the 2-dimensional 3-branching tree
(4 nodes). Since the number of nodes we have
to add to increase the dimensionality is de-
pendent on the number of nodes in the tree,
we expect the growth to be faster than linear.

Let Nb(d) be the number of nodes in
a d-dimensional tree of branching factor b.
Looking again at Figure 1, yield of the 3-
dimensional tree (i.e. the tree rooted at
B) can be seen as a full 3-branching 2-
dimensional local tree with another full 3-
branching 2-dimensional local tree attached
at every node (C,D, and E), except the root
(B). So we are multiplying the number of
nodes in a (d − 1)-dimensional structure,
N3(d − 1), by the number of nodes in the
original (d − 1)-dimensional yield minus the
root (B), N3(d − 1) − 1. Then we have to
add the root (B) back in, plus a new root
(A) to anchor the tree in the dth-dimension.
The number of nodes in a full 3-branching
d-dimensional local tree is given by the re-
currence

N3(0) = 1
N3(d) = N3(d − 1)2 − N3(d − 1) + 2

We are interested in the lower bound on
the size of these trees, so when we solve this
recurrence we only need to look at the largest
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N3(d) =
(N3(d − 2)2 − N3(d − 2) + 2)2−
(N3(d − 2)2 − N3(d − 2) + 2) + 2

The largest term is (N3(d − 2)2)2. If we
carry the recursion out to the next step, this
term grows to (N3((d − 3)2)2)2. In general,
the entire term is squared for every step in
the recursion, of which there are d. So we can
say that the number of nodes in a 3-branching
n-dimensional tree is Ω(k(2(d−1))) for some k.4

Moving from 2-branching to higher-
branching, then, means an abrupt shift
from size linear in the dimension to hyper-
exponential in the dimension.

4 Embed Algorithm

Similar to the CNF transformation, our
transformation will factor single b-branching
local trees to sets of 2-branching local trees.
We call this process “embed” because it in-
duces an embedding of b-branching trees into
2-branching trees.

To factor an arbitrary branching d-
dimensional local tree into a set of 2-
branching d-dimensional local trees, we can
simply traverse the local tree checking for il-
legal links. Since the factoring depends on
the order in which we handle the links, we
will standardize the process by always look-
ing for illegal links in the higher dimensions
first. When such links are found, we replace
the parent node of the link with a new, unique

4This can be verified by an easy induction on d.
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Figure 3: Example factoring of a 3d tree.

label,5 and we introduce a new rule rooted
in that new label. The tree for the new rule
consists of the original parent node of the link
along with its i-dimensional yield, with i be-
ing the dimension of the illegal link. Figure
3 shows the progression from left to right of
an arbitrary branching 3-dimensional struc-
ture being factored into 2-branching struc-
tures. In the first factoring, the node D is
found to have an illegal link in the second
dimension (it also has one in the first dimen-
sion, but this will be handled later). The re-
sulting two structures are shown.

If the dimension of an illegal link is less

5As a convention, if the original label was X, we
will make the new label X’. This is simply a short-
hand. It is important that X’ be unique in the gram-
mar as a whole to prevent the introduction of ambi-
guity. If this node X’ already exists, we will simply
append another prime marker until a unique label is
formed.
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as the root will create a lower dimensional
structure. To promote the structure to the
proper dimension, nodes are added with a
special value which we will call τ . This can
be seen in the structures rooted at G′, E ′,
and D′′ in Figure 3. Since these nodes are
added by the factoring process, there is no
circumstance in which a rule will be rooted
at τ . The only rules generated by the factor-
ing process are rules that already existed, or
rules rooted at one of the unique labels cre-
ated. Since τ has this restriction, we can give
all such nodes the same label, without hav-
ing to distinguish one from the other. A τ

node is not part of the image of tree but is
intended to help us “excavate” or reconstruct
the arbitrary-branching structure after pars-
ing is complete.

Because τ is never the root and occurs only
in 2-branching rules, we can guarantee that
each τ node will always have exactly one suc-
cessor. Figure 4 shows a 4-dimensional rule
being factored into two 2-branching rules.
Notice how τ is used to allow E ′ to be the
root of a full rule containing only E and F .
Without the use of τ , the rule would only be
2-dimensional. Because of this use of chain-
ing τ nodes, there will never be more than
one successor for any such node.

Here is a more detailed explanation of the
factoring shown in Figure 3. The first illegal
link encountered is the second dimensional
successor of D. D is re-labeled as D′ and the
illegal yield is removed. This result is shown
in the top branch in the figure. A new tree is
formed with its root labeled D′ and the illegal
yield is set as the yield of the new tree. This

A
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E F
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D E’

F

Figure 4: A 4-dimensional local tree of a
grammar being factored into 2-branching lo-
cal trees.

new tree is shown in the lower branch in the
figure. Now the two new trees are processed.
The upper tree finds another illegal link, the
1-dimensional link on D′. As before, D′ is
re-labeled D′′ and the illegal yield is chopped
off (upper branch). A new tree with a root
labeled D′′ is formed, similar to before. This
time, however, we cannot just set the illegal
yield as the yield of the new tree, because we
only have a 1-dimensional yield, while a 2-
dimensional yield is required. This is where τ

comes in. To create a 2-dimensional yield, we
will set the 1-dimensional yield as the succes-
sor of a τ node. Now we have a 2-dimensional
yield that can be used (lower branch). This
process continues until trees with no illegal
nodes are left. In this example, the tree is
factored into five 2-branching trees.

4.1 Algorithm

;embed takes the label of the root of a

; local tree in a grammar, the local

; yield of that root, and a grammar;

; and adds the rule to the grammar

; in embedded form.
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automaton) {

new tree startTree = t

for dim from n-1 to 0 {

;Loop Invariant: There are no illegal

; links in the nodes above t in

; startTree.

for i from dim+1 to n {

;Loop Invariant: t has no illegal

; links in all dimensions from dim+1

; to i.

;At this point, an i-dimensional

; link is illegal.

if (t has link i) {

new tree u

relabel t with unique label

for j from 1 to n-1 {

;Loop invariant: u has no

; successor in any dimension

; less than j, except for an

; i-dimensional successor.

if ( j != i and

u has no j-dimensional

link )

delete j-dimensional link of u

;filltree extends u into a d-dimen-

; sional tree by addint tau.

u = filltree(t.link(i), i,

automaton)

;Now we want to keep looking for

; illegal links

embed(unique label T’, u, t’)

;We can finally remove the

; illegal link

t.unlink(i)

}

;Postcondition: u has no successor

; except for an i-dimensional

; successors.

}

;Postcondition: t has no illegel links

; in any dimension

;All illegal links have been fixed, so

; move to the next node.

t = t.link(dim) if dim > 0

}

;Postcondition: There are no illegal

; links anywhere in startTree.

}

;filltree takes a tree, the dimension of

; the tree, and a grammar and adds

; roots to t so that it is now a complete

; grammar rule.

filltree(n-dim tree t, dim, grammar) {

for i from dim to n-1 {

;Loop invariant: t is an i-dimensional

; local yield.

if ( i = t->dim() )

new tree newtree is labeled tprime

otherwise

new tree newtree has label of tau

create empty tree with label

of tau

add that tree to the grammar

newtree->set_link(i,t)

}

;Postcondition: t is an (n-1)-dimensional

; local yield.

return newtree

}
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Size

While it does allow us to parse with simpler
structures, the factoring process cannot im-
prove the hyper-exponential size of the gram-
mar as a function of the dimensionality. Since
every node in the n-branching structure must
be represented in the grammar, the growth in
the size of the grammar must coincide with
the growth in the size of n-branching trees.
We can see this by looking at the illegal links
present in a 3-branching local tree. Remem-
ber that we consider all links that are not
in a 2-branching local tree but are in an n-
branching local tree illegal. This means that
the number of illegal links in a given struc-
ture can be defined as Nk(d) − N2(d), where
k is the branching factor of the tree, since all
the links in the 2-branching tree must also be
in the k-branching tree and no other links in
the k-branching tree can be legal.

The embed function is designed to fix one
illegal link for every new local tree created.
There is a side-effect, however, when a higher
dimensional illegal link is fixed. In a full
tree, every n-dimensional illegal link fixed
also fixes an i-dimensional illegal link for all
i < n. This can be seen in Figure 5. When
the 2-dimensional link labeled “A” is fixed,
the link labeled “a” will also be fixed as well.
When the structure is moved to a new local
tree to fix “A”, “a” will automatically move
to a 2-branching position, so no new local tree
needs to be created to fix it. Similarly, when
the illegal 3-dimensional link labeled “B” is
fixed, the two links labeled “b” will be also

X

X

X

X

X X X

X X X

X X X

X X X
A

a

B b
b

Figure 5: When one of the links labeled with
a capital letter is fixed, the links labeled with
the same letter in lowercase will also be fixed.

be fixed.
Looking at a full 3-dimensional 3-

branching tree, there are 3 illegal 2-
dimensional links and 7 illegal 1-dimensional
links. Since each time we fix a 2-dimensional
link, a 1-dimensional link will also be fixed,
we only need to create new rules to fix 4
1-dimensional links (7 − 3 = 4). In total, we
will create 7 new rules, 3 to fix 2-dimensional
links and 4 to fix 1-dimensional links. In
the 4-dimensional case, let there be x 3-
dimensional illegal links, y 2-dimensional
illegal links, and z 1-dimensional illegal
links. We will fix x 3-dimensional links, y−x

2-dimensional links, and z − x − (y − x)
1-dimensional links.

x = x

y = y − x

z = z − x − (y − x) = z − y

Notice that when we add the terms together
to get the total number of links to be fixed,
everything cancels except for z, the number
of 1-dimensional links. In fact, the number of
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of 1-dimensional links.

Theorem 1 For a full d-dimensional, n-
branching local tree, the number of local trees
in the factored form required is equal to the
number of 1-dimensional illegal links.

Before we can prove this, we need to estab-
lish some lemmas.

Lemma 2 In a full n-branching tree, when
an i-dimensional link is fixed using embed, a
j-dimensional link is also fixed for all 0 < j <

i.

Proof: Embed will set the i-dimensional
link to the i-dimensional position in a
2-branching tree. Since the i-dimensional
link is now a legal link, it is allowed to
have an (i − 1)-dimensional successor by
Lemma 1. In a full n-branching tree, it
is guaranteed to have such a link. Since
that (i − 1)-dimensional successor is now
also a legal link, it is allowed to have an
(i − 2)-dimensional link, which it is guaran-
teed to have in a full n-branching tree. This
continues to the minimal dimension. a

Lemma 3 Let l(i) be the number of i-
dimensional links that are not fixed by the
side-effect of fixing higher dimensional links
as in Lemma 2 and t(i) be the total num-
ber of i-dimensional illegal links, then l(x) =
t(x) − t(x + 1).

Proof: [by induction on d - x]
Base Case: l(d − 1) = t(d − 1) (By Lemma
2).
Inductive Hypothesis: For induc-
tive purposes, assume that l(d − j) =
t(d − j) − t(d − j − 1) for all 1 < j < d − x.
Induction:

l(x)
= t(x) −

∑

x<i<d

[l(i)]

= t(x) −
∑

x<i<d−1
[l(i)] + l(d − 1)

= t(x) −
∑

x<i<d−2
[l(i)]+

l(d − 2) + t(d − 1)
(By base case)

= t(x) −
∑

x<i<d−2
[l(i)]+

(t(d − 2) − t(d − 1)) + t(d − 1)
(By IH)

= t(x) −
∑

x<i<d−2
[l(i)] + t(d − 2)

repeating for upper bound d − 3 . . . x + 1
= t(x) −

∑

x<i<x+2
[l(i)] + t(x + 2)

= t(x) − (t(x + 1) − t(x + 2))+
t(x + 2)

= t(x) − t(x + 1)

a

Proof: Proof of Theorem 1
Let the total number of local trees in factored
form required be equal to

l[1] + l[2] + . . . + l[d − 1]

or the sum of all illegal links not fixed by
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l(1) + l(2) + . . . + l(d − 1) =
(t(1) − t(2)) + (t(2) − t(3))+
(t(3) − t(4)) + . . .+
(t(d − 2) − t(d − 1]) + t(d − 1)
= t(1).

a

Theorem 1 is not true for trees without
the maximum number of illegal links. It is
the worst case, however, since the side-effect
described in Lemma 2 will only fail to fix a
lower dimensional link if it does not exist, and
therefore does not require a new factored tree
anyway.

Even though Theorem 1 proves that we do
not need a new grammar rule for every illegal
link in the tree, the growth of the grammar
will still be hyper-exponential in the dimen-
sion of the local trees because the number
of 1-dimensional links is a constant fraction
of the number of total links. In the worst
case (a full tree), every 2-dimensional suc-
cessor will be the root of a 1-dimensional
local tree containing n − 1 1-dimensional
links, where n is the branching factor. Sim-
ilarly, every 3-dimensional successor will be
the root of a 2-dimensional local tree contain-
ing n− 1 2-dimensional links. In general, ev-
ery d-dimensional successor will be the root
of a (d − 1)-dimensional local tree contain-
ing n − 1 (d − 1)-dimensional links. This is
optimal, though, since we cannot get around
representing the entire n-branching structure,
whether it be in complete or factored form.

6 Future Work

We are working on the converse of the embed
operation, which we call “excavate”. In a top-
down traversal of the tree, every τ node will
be replaced with its only successor, and each
unique label created during the factoring will
be replaced with its n-dimensional successor.
If we are careful not to leave a node until it
does not contain a τ or a unique label (this
may require many operations on one node),
we will have the original structure when the
traversal has terminated.

While we are confident in the correctness of
embed, we have not provided a formal proof.
When we have finished developing excavate,
we hope to simultaneously prove the correct-
ness of both algorithms by proving

T (G) = excavate(T (embed(G)))
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