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Abstract

We explore the possibility of accounting for
scrambling patterns in German using multi-
dimensional grammars. The primary desir-
able characteristic of this approach is that it
employs elementary structures with a single
uniform component and combining operations
which operate at a single point in the derived
structure. As a result, we obtain an analysis
that is much closer in spirit to ordinary TAG
and to the intuitions of TAG based linguistics.
Ultimately, we obtain an account in which the
variations in word order are consequences of
variations of a small set of structural parame-
ters throughout their ranges.

1 Introduction

The difficulty of accounting for the phenomenon of
scrambling, the apparently arbitrary order in which ar-
guments can occur in subordinate clauses in German, has
been one of the primary motivations for exploration of ex-
tensions to TAG (Rambow, 1994; Kulick, 2000; Rambow
et al., 1995; Rambow et al., 2001; Becker et al., 1991).
The issue is not generation of the string sets—in most ac-
counts these are actually context-free—but rather doing
so within a derivational framework in which lexical heads
and their arguments are introduced simultaneously. This
idea that elementary structures should include all and
only a single thematic domain (Frank, 2002) is generally
taken to be the foundation of TAG based linguistic theo-
ries. Among other things, it insures that every elemen-
tary structure is semantically coherent and that deriva-
tions maintain that coherence. Under these assumptions,
it has been shown that scrambling is beyond the gener-
ative power of ordinary TAG and, in full generality, be-
yond even set-local multicomponent TAG (Becker et al.,
1992).

Generally, extensions to TAG intended to accom-
modate scrambling involve factorization of elementary

structures either into tree sets or into trees with more or
less independent regions accompanied by a modification
of the combining operation to interleave these regions in
the derived tree. In this paper, following the lead of our
exploration of similar issues in TAG accounts of English
raising phenomena (Rogers, 2002), we explore one il-
lustrative pattern of scrambling using multi-dimensional
grammars (Rogers, 2003). The primary desirable char-
acteristic of this approach is that it employs elementary
structures with a single uniform component and combin-
ing operations which operate at a single point in the de-
rived structure. As a result, we obtain an analysis that
is much closer in spirit to ordinary TAG and to the intu-
itions of TAG based linguistics. Ultimately, we obtain an
account in which the variations in word order are conse-
quences of variations of a small set of structural parame-
ters throughout their ranges.

We should be clear at the outset that even though our
primary motivation is a desire to preserve the fundamen-
tal tenets of standard TAG theories of syntax, our goal
is not a linguistically complete account of scrambling, or
even one that is linguistically motivated beyond the goal
of maintaining semantically coherent elementary struc-
tures and derivations. Rather, we intend to show how
the formal power of the multi-dimensional grammars can,
potentially, support such an account. We look only at
one particular case of scrambling, but we believe that this
case illustrates the relevant formal issues. These results
suggest that scrambling phenomena of any concrete de-
gree of complexity can be handled at some level of the
multi-dimensional grammar hierarchy. We close the pa-
per with some speculation about what such a result might
have to say about the nature of limits on the acceptability
of scrambling as its complexity increases.

2 A Formalized Instance of Scrambling

The case we examine, taken directly from Joshi, Becker
and Rambow (Joshi et al., 2000) (also (Becker et
al., 1991)), involves scrambling within a matrix clause
headed by a verb that subcategorizes for two NPs and an
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Figure 1: Class A) NP
� �
NP

	 �
NP


� NP
� � V � V �

S with that embedded S headed by a verb that subcatego-
rizes for three NPs, one of which is a PRO subject. This
formalizes as

����
NP

����
NP

� ���
NP

�
� � NP

���� V � V ��� �
a permutation �

where NP

��
and NP

� �
are the first and second argument

of the matrix verb and NP

�� and NP
�� are the arguments,

other than PRO, of the embedded clause.
There are 24 permutations of the four NP arguments.

We divide these into six classes (where � ��� and � ��� each
vary over 1,2):

A) NP
� �
NP

	 �
NP


� NP
� � V � V �

B) NP

� NP

� �
NP

	 �
NP

� � V � V �
C) NP


� NP
� � NP

� �
NP

	 �
V � V �

D) NP
� �
NP


� NP
� � NP

	 �
V � V �

E) NP

� NP

� �
NP

� � NP
	 �
V � V �

F) NP
� �
NP


� NP
	 �
NP

� � V � V �
.

3 Class A)—CF Structures

Class A) is the canonical structure with, potentially, the
arguments extracted within their own clauses. Standard
TAG accounts treat the matrix clause as an auxiliary tree
adjoining at the root of the embedded clause. Follow-
ing Rogers (1998) and Rogers (1999) we interpret TAG
as a sort of Context-Free Grammar over trees. Just as

CFG productions can be interpreted as local (height one)
trees expanding a root node to a string yield with the
derivation process splicing these together to form deriva-
tion trees, TAG auxiliary trees can be interpreted as local
three-dimensional structures expanding a root node to a
tree yield with the TAG derivation process splicing these
together to form three-dimensional derivation structures.

These derivation structures correspond exactly to the
derivation trees normally associated with TAG, with the
exception that the derived structure (in this case a tree)
can be obtained from it by restricting to nodes of max-
imal depth (in the third dimension) in a way analogous
to taking the string yield of a CFG derivation tree. The
intuition behind these structures is that TAG expresses a
hierarchical decomposition of trees analogous to the hi-
erarchical decomposition of strings that those trees repre-
sent.

It is important not to misconstrue this notion of “di-
mension.” While it may be convenient to visualize these
structures as having actual extent in the third dimen-
sion, they are, fundamentally, just graphs with multi-
sorted edges and, hence, dimensionless. The three dimen-
sions correspond to linear precedence, ordinary domina-
tion and domination of the “adjoining” sort. These are
not arbitrary or independent. As they represent recursive
hierarchical decomposition, each edge relation is “tree-
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like” and descendants of a node along a given dimension
inherit the relationships of that node in all smaller dimen-
sions in the same way that linear precedence is inherited
by the nodes in a subtree. (See Rogers (2003).)

Here, the adjunction of the matrix tree at the root of
the embedded tree attaches the root of the three dimen-
sional structure representing the former at the S node in
the (tree) yield of the latter. (See Figure 1.) The up-
per pair of structures represent the base structures, the
lower pair the structures with a locally extracted argu-
ment. Each of the four variations of Class A) is obtained
from one of the four combinations of these four struc-
tures. We have followed Rogers (2002) in treating the
subject as if it were adjoined, in some sense, at the root of
the VP. This is done, here, for purely formal reasons—it
will provide the structural flexibility we will need to de-
rive the more complex scrambling patterns. We carry this
structural configuration through in treating extraction; we
assume that extracted arguments attach in a similar fash-
ion to the root of the S.

Note that there is potential ambiguity in taking the tree
yield of these structures in that the yield of one compo-
nent might attach at any of the leaves of the yield of the
component which immediately dominates it. In TAG, of
course, this is resolved by designating one of the leaves
as the foot with all splicing being done at the foot. Here
we designate the foot by marking the spine of the compo-
nents with doubled lines. We carry this through in higher
dimensions, as well; each elementary structure, in each
dimension, has a spine leading from its root to a foot
node in its yield. Two of the four resulting tree yields
are shown on right of the figure.

Since adjunction at the root has the same effect as
substitution, this is effectively a context-free structure.
As shown schematically in the figure, the (two dimen-
sional) yields of the two structures are simply concate-
nated. Note that, as in the standard TAG accounts, addi-
tional recursion is accommodated by adjoining additional
subordinating structures at the root of what is here the
matrix structure.

4 Classes B) and C)—Ordinary
Adjunction

In Classes B) and C), the arguments of V � are wrapped
around those of V



, as shown at the bottom of Figures 2

and 3. This is the pattern corresponding to adjunction
proper. Class B) can be obtained by extracting either
NP



� , NP

�� then adjoining the matrix structure at the foot
of the yield of the extracted NP structure (the point be-
tween the extracted element and the original S node).
As usual, this has the effect of splitting the tree yields
of the subordinate structure into two factors and inserting
the tree yield of the matrix structure between them. Note

that all that distinguishes this class from Class A) is the
third-dimensional foot node of the embedded structure,
which is, itself, determined by the form of the extracted
NP structure.

Class C) is nearly identical. We extract both of the
arguments of V � and adjoin, again, at the point between
the extracted elements and the original S node.

Note that in both these cases, the scrambling can apply
recursively by attaching additional auxiliary structures at
the tree yield of the first. If this is attached at the node
corresponding to the root of the yield of that structure,
in the manner of Class A), the effect is only to move the
arguments scrambled out of the more deeply embedded
clauses across the new clause. If, on the other hand, it
is attached at the foot of the yield of the extracted NP
structure, in the manner of Classes B) and C), then the
effect will be to scramble additional arguments out of the
intermediate clause.

5 Class D)—Higher-Order Adjunction

Class D) is the first of the configurations that cannot be
obtained by ordinary adjunction. Here the arguments of
V



and V � don’t simply nest one inside the other, but,

rather interleave in the way shown schematically on the
top left of Figure 4. Since the sequences of labels along
the spines of TAG tree sets must form CF languages,
such “cross-serial” configurations cannot be generated by
TAGs. They can, however, be generated if we add an-
other level of hierarchical decomposition. Grammars at
this level yield tree sets with TAL spine languages (cor-
responding to the third level of Weir’s Control Language
Hierarchy (Weir, 1992)). A schematic representation of
the general embedding pattern provided at this level is
given in Figure 5.

To employ this nesting pattern we adopt four-
dimensional structures and take the matrix structure to,
again, attach between the extracted structure and the orig-
inal S, but now along the fourth dimension. (Figure 4.)
This has the result of splitting the three-dimensional yield
of the embedded structure into two factors and inserting
the three-dimensional yield of the matrix structure be-
tween them. Given the third-dimensional foot of the ma-
trix structure, the “upper” factor of the embedded struc-
ture is, effectively, adjoined between the two arguments
of the matrix structure which is, in turn adjoined at the
root of the “lower” factor. (As shown at the bottom of the
figure.) The effect on the tree yield is exactly as if the
(two-dimensional) matrix tree had been factored into two
components, one adjoining at the root of the embedded
tree and one properly along its spine. (As shown at the
right.)

It should be noted that with this configuration we can
account for all the variations of Classes A) through D) by
varying the position of the foot of the matrix structure and
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the point at which it attaches to the embedded structure.
(See Figure 6.)

6 Classes E) and F) and a Unified Account

The nesting pattern of Class E) (Figure 7) requires the
embedded tree to be factored into three components, not
just two. This can still be obtained with multi-component
adjoining in a manner similar to that of Class D), with
both components of the matrix structure adjoining prop-
erly along the spine of the embedded tree. While this
pattern is also obtainable in the four-dimensional gram-
mars, it necessarily uses the upper half of the VP compo-
nent, which, for the sake of consistency, we would rather
not do. Consequently, we again add another hierarchical
relationship and lift to the fifth level, taking the two argu-
ments of V � to be extracted via the fourth relation rather
than the third. Class F) can be treated similarly, with the
exception that one of the arguments is extracted along the
third relation, the other along the fourth. (Figure 8.)

This variation between Classes E) and F) leads to an
account in which all six classes are derivable within a
single basic structure, shown in Figure 9. Here there are
six parameters of variation:

1. The position of the fourth-dimensional foot of the
matrix structure.

2. Whether one or both arguments of V



are extracted
along the fourth relation.

3. and 4. The position of the three-dimensional feet of
the matrix and embedded structures.

5. and 6. And, finally, the relative nesting of the ex-
tracted NPs in each structure.

This gives 96 combinations but as the word-order vari-
ations are exhaustive, they generate only the 24 distinct
configurations of the six classes of structures.

7 Arbitrarily Complex Scrambling

While no level of the multi-dimensional grammar hierar-
chy can capture scrambling of arbitrary complexity, there
is no bound on the number of tree factors that can be
interleaved at some level of this hierarchy. In general,
grammars at the

�	��

level factor the tree yields of the el-

ementary structures into �
�� �

fragments, with the tree
yield of the result of adjoining one into another being
split into �

��������
regions from the initial structure in-

terleaved with �
����

regions from the auxiliary structure.
(Figure 10 gives the pattern for the fifth level.) Conse-
quently, scrambling of any concrete degree of complexity
can be captured at some level of the hierarchy, although
it is not clear that this can necessarily be done in an plau-
sibly “uncontrived” way.

In Joshi et al. (2000), Joshi, Becker and Rambow note
that the boundary of general acceptability in scrambling,
roughly two levels of embedding, coincides with what
can be handled by tree-local MCTAG. This leads them to
suggest that this boundary may actually be competence
based, rather than performance based as is usually as-
sumed. Here we have additional flexibility. In choos-
ing the level of the competence grammar in the multi-
dimensional hierarchy, we set the boundary on the com-
plexity of the scrambling we admit. On the other hand,
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given that the level of the grammar corresponds to the
number of hierarchical relations we use in encoding the
structure of the utterances, one could make a plausible
argument that the level of the grammar might be deter-
mined by performance considerations, such as working
memory limitations. In this way one might arrive at an
account of the limits on the complexity of scrambling
that was simultaneously performance based—a conse-
quence of bounds on working memory—and competence
based—a consequence of the complexity of the grammars
which can be processed within those bounds.
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