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1 Introduction

The last several years have seen a number of intriguing experiments aimed at differentiating
the aural pattern recognition capabilities of various species [HCF02, FH04, GFMN06, PR05].
The idea is that these experiments may provide indirect evidence about those cognitive
faculties of our common ancestors and the foundation for the evolution of human language.

The fulcrum connecting the empirical data and conclusions about the characteristics of
the cognitive mechanisms the experiments are intended to explore is formal language theory
(FLT). Characterizations of the structure of language classes (such a Nerode-style charac-
terizations and pumping lemmas) motivate the choice of stimulus patterns the experiments
employ and characterizations of those classes in terms abstract computational mechanisms
(such as grammars and automata) provide clues about the cognitive mechanisms in play.

Nearly all of the FLT employed in this work is based in the Chomsky Hierarchy, but
there are a number of reasons for questioning whether this is really the right place to be
looking. To begin with, viewed as an instrument in the context of these experiments, the
CH seems to lack resolution. What is typically taken as emblematic of CFLs is far too hard
for humans (processing {peoplen leftn | n ≥ 1} rapidly outstrips any human being’s aural
pattern recognition abilities), while what is taken as representative of regular languages is far
too easy (being able to recognize {(ding dong)n | n ≥ 1} should hardly count as evidence
of ability to handle arbitrary regular languages).

Beyond that, traditional grammar- and automata-theoretic classes seem to presuppose
specific types of structure or specific classes of recognition mechanisms, raising questions
about whether these are necessarily relevant to the cognitive mechanisms under study.

There is, in fact, a rich hierarchy of classes of stringsets, ranging from the Strictly-Local
through the Star-Free stringsets, that is properly included in the class of Regular stringsets
and which is reiterated within the CFLs when they are taken as sets of structures rather
than just sets of strings. In addition to providing finer resolving power in the range of
capabilities that seem to be relevant to these studies, this subregular hierarchy includes
some of the earliest and most well-developed examples of descriptive characterizations of
language-theoretic complexity classes [MP71, Tho82, GR90, BS05].

Descriptive (model-theoretic) characterizations focus on the nature of the information
about the properties of a string (or structure) that is needed in order to distinguish those
which exhibit a pattern from those which do not. Consequently, they are independent of
specific mechanisms for specifying or recognizing the patterns.

The descriptive characterizations, however, do not stand alone. These classes are also
characterized by a range of abstract mechanisms including grammars, automata and, in
some cases, artificial neural networks. These characterizations in more traditional FLT
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terms provide a means of reasoning about the structural properties both of the individual
stringsets that satisfy a pattern and about the class of stringsets that can be described
within the means of the class.

Note that the grammar- and automata-theoretic characterizations do not determine the
actual form of a cognitive mechanism for recognizing patterns within the class. The fact
that there are many equivalent characterizations of each class implies that no conclusions
can be drawn about the specific details of the mechanism. What one can conclude, on the
other hand, is that whatever the actual mechanism is it must be sensitive to the kind of
information that characterizes the descriptive class and that the class of patterns that it
can recognize will exhibit those properties that are characteristic of the class.

Thus classes that can be characterized both automata- or grammar-theoretically and de-
scriptively, while not presupposing any concrete details of the mechanism, serve both ends
of these aural pattern recognition studies. By providing characterizations of the structure
of the stringsets that satisfy particular classes of patterns, they provide a means of design-
ing experimental protocols that can resolve contrasts between the cognitive capabilities of
the subjects. By providing highly abstract characterizations of the mechanisms which can
process particular classes of patterns they provide a means of drawing conclusions about
the differences in the capabilities of cognitive mechanisms that can account for observed
differences in recognition abilities.

In this paper we revisit the subregular hierarchy paying particular attention three as-
pects: the broad generality of the descriptive characterizations of the classes, the conse-
quences their structural characteristics have for the design of pattern recognition exper-
iments and the nature of the conclusions about the cognitive mechanisms involved that
these experiments can support. Most of the FLT results are either already well established
or could probably be best attributed to folklore. What we have to offer are two methodolog-
ical contributions. The first is general. We believe that our allocation of roles between the
descriptive and mechanism-oriented characterizations, in which conclusions about poten-
tial cognitive mechanisms are based only on the more abstract descriptive characterizations
and the mechanism-oriented characterizations are reserved for providing structural infor-
mation about the definable sets, provides an approach that is applicable to a wide range
of pattern-based experiments. The second is specific to the current experiments in aural
pattern recognition. We believe that experiments directed at distinguishing capabilities
with respect to the subregular hierarchy will provide a great deal of evidence about the
distinctions between the cognitive mechanisms of humans and those of other species.

In the remainder of this extended abstract we summarize these points.

2 The Subregular Hierarchy

The subregular hierarchy is actually a hierarchy of infinite hierarchies some of which can be
further refined into sub-hierarchies. We concentrate on the the main classes, each of which
is the closure of an infinite hierarchy of subclasses.
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2.1 Strictly Local Stringsets

The base of the hierarchy is the class of Strictly Local (SL) stringsets, those that can be
distinguished simply on the basis of which symbols occur adjacently. A Strictly k-Local
description is a set of k-factors (or k-grams), length k sequences of symbols drawn from the
alphabet augmented with start and end symbols. The stringset such a description defines is
the set of strings which include only k-factors from the set. The set {(ding dong)n | n ≥ 1}
is SL2.

Computationally, such Strictly k-Local stringsets are those that can be recognized by
scanners, automata that simply scan a k-symbol window across the input failing if, at any
point, the window contains a factor that is not in the permitted set. A grammar-theoretic
characterization can be obtained by taking the k-factors to be productions permitting the
extension of a string with the kth symbol of the factor if the string currently ends with the
first k − 1 symbols.

The Strictly k-Local stringsets form a proper hierarchy in k, with the class of Strictly
Local stringsets, in general, being the union of the Strictly k-Local stringsets for all finite
k. From a cognitive perspective, this is the class of stringsets that can recognized while
only remembering the previously encountered block of symbols for blocks of some finitely
bounded size or, more generally, that can be distinguished solely on the basis of whether
particular finitely bounded blocks of symbols do not occur.

The characteristic property of SL stringsets is that if there are two strings in the set
in which the same sequence of k − 1 symbols occurs, then the result of substituting the
suffix starting at that sequence in one of them for the suffix starting at that sequence in the
other must also be in the stringset. Note that this is a characterization: a stringset can be
recognized while remembering only the preceding k − 1 symbols if and only if it is closed
under this type of substitution of suffixes.

One of the consequences of this characterization is that SL specifications cannot require
some particular symbol to occur in every string unless the k-factors that may precede it are
distinct from those that may follow it. For example, the set of strings of ‘A’s and ‘B’s in
which at least one ‘B’ occurs is not SL (for any k). We will refer to this set as “Some-B”.

An animal that used a strategy to recognize strings that was based only on remembering
the most recently encountered fixed-length sequence of symbols could potentially distinguish
strings of the form (AB)n from those, for instance, of the same form in which one or more
of the ‘B’s was replaced with an ‘A’, but would not be able to distinguish strings of the
form AnBAm from strings of only ‘A’s.

The failure of an animal to recognize a particular SL stringset, however, does not imply
that they do not employ this strategy. Their ability to apply the strategy may be limited in
ways that exclude that set. Similarly, while success in recognizing a SL stringset establishes
that the subject employs a strategy that is at least as powerful as scanning k-factors, it
does not imply that they are capable of recognizing every SL stringset. So we can establish
lower bounds experimentally (individuals of this species can recognize at least some SL
stringsets) but experiments of this sort will provide firm evidence only of possible upper
bounds (these individuals fail to recognize at least some SL stringsets). The strength of the
evidence depends on the preponderance of negative results and the breadth of variation in
the experimental setting.
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2.2 Locally Testable Stringsets

While SL descriptions cannot require some factor to occur, they can forbid it. So Some-B
is in co-SL. Since the class of Strictly Local stringsets is closed under intersection, if we
close SLk under complement we get closure under all Boolean operations. Descriptions of
stringsets in this class can be taken to be formulae in a propositional language in which the
propositional variables are k-factors which are taken to be true for a string iff they occur
in that string. Stringsets definable in this way are called Locally k-Testable (LTk). Again,
these classes form a proper hierarchy in k with the class LT being the closure of the hierarchy
under union. These formulae are just expressions of which k-factors occur and do not occur
in a string and which employ a truth-functionally complete set of logical connectives. Any
pattern that can be described in these terms defines a Locally Testable stringset.

Automata for recognizing LTk stringsets can be obtained by extending scanners to keep
track of which k-factors occur, feeding the result into an arbitrary Boolean network. Since
there are but finitely many k-factors over a fixed alphabet this is a finite-state recognition
strategy.

The characteristic of Locally k-Testable sets is that strings that include exactly the same
set of k-factors cannot be distinguished—they either both must be included in the set or
they must both be excluded. One of the consequences of this is that, while Some-B is Locally
Testable, the set of strings of ‘A’s and ‘B’s in which exactly one ‘B’ occurs (we’ll call this
“One-B”) is not Locally Testable (for any k): the strings AkBAk and AkBAkBAk include
exactly the same sets of k-factors, but the first is in One-B while the second is not.

So, an animal that used a strategy based on keeping track of exactly which subset of
the set of all k-factors over the relevant alphabet occurs in a string (or which was otherwise
sensitive to only this information) could potentially distinguish strings of ‘A’s and ‘B’s in
which some ‘B’ occurs from those in which no ‘B’ occurs, but would not be able to distinguish
strings in which exactly one ‘B’ occurs from those in which more than one occurs.

2.3 Locally Threshold Testable

A stronger strategy would be to keep track not just of which k-factors occur but how many

times each occurs. If one limits this to counting up to a finite threshold (not distinguishing
different numbers of occurrences if they both exceed the threshold) then this will still be
finite-state. This would allow recognition of “n-B” for any value of n less than the threshold.
Stringsets that can be distinguished in this way are called Locally Threshold Testable (LTT)
and there are proper hierarchies in both k and t, the size of the threshold.

Strikingly, this turns out to be exactly the class of stringsets one can define using First-
Order logic to reason about positions in strings using a monadic predicate for each symbol
(picking out the set of positions in which it occurs) and a binary predicate relating positions
to their immediate successor. LTT definitions are just finite sets of FO formulae over this
signature. Again, any pattern that can be described in this way defines an LTT stringset.

The characteristic of LTT stringsets is analogous to that of LT stringsets. We say
that two strings are (k, t)-equivalent whenever, for each k-factor, they include either the
same number of occurrences of that k-factor or they both include at least t occurrences.
A stringset is LTT if and only if there is some k and t for which it does not distinguish
(k, t)-equivalent strings: every pair of equivalent strings are either both included in the set
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or both excluded.
One could probe the limits of LTT by exploring a range of values of k and t, but it is

doubtful that a sufficiently large range could be covered in a practical set of experiments. A
better approach would be to explore the ability of animals to recognize the set we will call
“B-before-C”. This is the set of strings over ‘A’, ‘B’ and ‘C’ in which at least one occurrence
of ‘B’ occurs before any occurrence of ‘C’. To see that this is not LTT for any k or t, it
suffices to note that the strings AkBAkCAk and AkCAkBAk have exactly the same number
of occurrences of every k-factor and therefore are (k, t)-equivalent for all t.

An animal that used a strategy of counting k-factors up to some threshold (or which
was otherwise sensitive to only this information), then, could potentially recognize One-B,
but would fail to recognize B-before-C.

2.4 Star-Free Stringsets

The next step is to extend the FO signature with a predicate for the transitive closure of the
successor relation (“precedes” or “less-than”). Stringsets FO-definable over this signature
are called Star-Free (SF).1 Any pattern that can be described by a finite set of FO formulae
over this signature defines a Star-Free language.

In abstract language-theoretic terms, SF turns out to be the closure of LT under con-
catenation and Boolean operations. This class is called Locally Testable with Order (LTO).
From a cognitive perspective it corresponds to using a fixed sequence of threshold-counting
strategies—equivalently allowing the threshold counters to be reset up to a fixed, finitely
bounded number of times—and keeping track of which succeed and which fail. Automata-
theoretically, SF is the class of stringsets recognized by Counter-Free automata, automata
for which the syntactic monoid is aperiodic. The key consequence of this is that the au-
tomata cannot do modular counting. Membership in SF stringsets cannot depend on the
number of times some factor occurs modulo some fixed value. (In other words, the thresh-
old counters cannot be reset arbitrarily many times.) One simple stringset that requires
modular counting is the set of strings of ‘A’s and ‘B’s in which the number of ‘B’s is even
(“Even-B”).

So, while an animal using a sequence of LT strategies could potentially recognize B-
before-C they would be unable to recognize Even-B.

2.5 Regular Stringsets and Beyond

Finally, if we move to a Monadic Second-Order language, allowing quantification over subsets
of positions rather than just individual positions (quantification over finite subsets, wMSO,
actually suffices), using either signature (since transitive closure is MSO definable), we
obtain the Regular stringsets. This characterization of Regular stringsets dates back to
the late ‘50’s, due to Büchi [Büc60], Elgot [Elg61] and Medvedev [Med64]. Cognitively,
these are the Finite-State stringsets: any mechanism for which there is a finite bound on
the amount of information that is retained while processing a string recognizes, at most, a
regular stringset.

1These are also the stringsets definable by star-free expressions, regular expressions which may employ

complement but not Kleene-closure.
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What CFLs introduce is a need, in principle, to retain an amount of information that is
proportional to the length of the string, hence not finitely bounded. This can be captured
in a descriptive setting by reasoning about additional structure beyond the linear ordering
of symbols in the string. The grammar-theoretic characterization that gives the class its
name generates strings, in effect, by tracing out one sort of additional structure. It can be
captured in automata-theoretic terms, of course, by augmenting finite-state automata with a
stack, or some other store with a size that is not finitely bounded. It should noted, however,
that evidence that a subject employs a strategy that is not finite-state does not imply that
the mechanism they are using actually has access to a store of unbounded size. It may be
the case that the mechanism implements a strategy which, in general, requires unbounded
storage but which fails on strings beyond a particular length or degree of complexity or,
rather, which would fail if it ever encountered such strings.

Conclusion

Formal language theory provides useful tools for exploring pattern recognition capabilities
in general and, in particular, for designing and interpreting experiments for distinguish-
ing differential capabilities of this sort across species. Paradoxically, the machine-oriented
aspects—grammar- and automata-theory—have little to say about the cognitive mecha-
nisms involved. Descriptive characterizations, in contrast, because they focus on the kind
of information that distinguishes structures in a class, can provide clues about the cognitive
mechanisms under study that are independent of a priori assumptions about the details
of the physical implementation of those mechanisms. What the grammar- and automata-
theoretic characterizations do provide is highly specific information about the nature of
stringsets that can or cannot be recognized by these means, providing clear criteria on
which to choose sets of stimuli to test the boundaries of the class. Together, these pro-
vide a sound foundation for studying classes of stringsets that might be relevant to the
experimental study of prerequisites to language.

The subregular hierarchy encompasses a range of extremely general ways of defining
classes of patterns which are well understood from both a descriptive and machine-oriented
perspective. The prevailing focus on the boundary between the finite-state and the context-
free seems to have been taken over from the work of Chomsky in 1956. But he was concerned
with the capacities of human beings, who we already knew spoke complex languages. With
tamarins and starlings we are fairly sure that no developed language capability is in place.
What we seek is a glimpse of any cognitive capacity for syntactic pattern recognition they
might have that could serve as an evolutionary building block for linguistic capacities. As
yet we do not even know whether an animal could recognize a pattern that is LT but not
SL. The range of complexity classes that make up the subregular hierarchy seems to span
a great deal of the territory that is likely to be relevant to distinguishing human aural
pattern recognition capabilities from those of other species. This seems to be a particularly
promising range of classes on which to focus.
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